DACBench: A Benchmark Library for Dynamic Algorithm Configuration

Dynamic Algorithm Configuration (DAC) aims to dynamically control a target algorithm's hyperparameters in order to improve its performance. Several theoretical and empirical results have demonstrated the benefits of dynamically controlling hyperparameters in domains like evolutionary computatio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2021-05
Hauptverfasser: Eimer, Theresa, Biedenkapp, André, Reimer, Maximilian, Adriaensen, Steven, Hutter, Frank, Lindauer, Marius
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Eimer, Theresa
Biedenkapp, André
Reimer, Maximilian
Adriaensen, Steven
Hutter, Frank
Lindauer, Marius
description Dynamic Algorithm Configuration (DAC) aims to dynamically control a target algorithm's hyperparameters in order to improve its performance. Several theoretical and empirical results have demonstrated the benefits of dynamically controlling hyperparameters in domains like evolutionary computation, AI Planning or deep learning. Replicating these results, as well as studying new methods for DAC, however, is difficult since existing benchmarks are often specialized and incompatible with the same interfaces. To facilitate benchmarking and thus research on DAC, we propose DACBench, a benchmark library that seeks to collect and standardize existing DAC benchmarks from different AI domains, as well as provide a template for new ones. For the design of DACBench, we focused on important desiderata, such as (i) flexibility, (ii) reproducibility, (iii) extensibility and (iv) automatic documentation and visualization. To show the potential, broad applicability and challenges of DAC, we explore how a set of six initial benchmarks compare in several dimensions of difficulty.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2529028877</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2529028877</sourcerecordid><originalsourceid>FETCH-proquest_journals_25290288773</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRwdHF0dkrNS86wUnBUADNyE4uyFXwyk4oSiyoV0vKLFFwq8xJzM5MVHHPS84sySzJyFZzz89Iy00uLEksy8_N4GFjTEnOKU3mhNDeDsptriLOHbkFRfmFpanFJfFZ-aVEeUCreyNTI0sDIwsLc3Jg4VQDjwziY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2529028877</pqid></control><display><type>article</type><title>DACBench: A Benchmark Library for Dynamic Algorithm Configuration</title><source>Free E- Journals</source><creator>Eimer, Theresa ; Biedenkapp, André ; Reimer, Maximilian ; Adriaensen, Steven ; Hutter, Frank ; Lindauer, Marius</creator><creatorcontrib>Eimer, Theresa ; Biedenkapp, André ; Reimer, Maximilian ; Adriaensen, Steven ; Hutter, Frank ; Lindauer, Marius</creatorcontrib><description>Dynamic Algorithm Configuration (DAC) aims to dynamically control a target algorithm's hyperparameters in order to improve its performance. Several theoretical and empirical results have demonstrated the benefits of dynamically controlling hyperparameters in domains like evolutionary computation, AI Planning or deep learning. Replicating these results, as well as studying new methods for DAC, however, is difficult since existing benchmarks are often specialized and incompatible with the same interfaces. To facilitate benchmarking and thus research on DAC, we propose DACBench, a benchmark library that seeks to collect and standardize existing DAC benchmarks from different AI domains, as well as provide a template for new ones. For the design of DACBench, we focused on important desiderata, such as (i) flexibility, (ii) reproducibility, (iii) extensibility and (iv) automatic documentation and visualization. To show the potential, broad applicability and challenges of DAC, we explore how a set of six initial benchmarks compare in several dimensions of difficulty.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Benchmarks ; Configurations ; Domains ; Evolutionary algorithms ; Evolutionary computation ; Libraries ; Machine learning</subject><ispartof>arXiv.org, 2021-05</ispartof><rights>2021. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>781,785</link.rule.ids></links><search><creatorcontrib>Eimer, Theresa</creatorcontrib><creatorcontrib>Biedenkapp, André</creatorcontrib><creatorcontrib>Reimer, Maximilian</creatorcontrib><creatorcontrib>Adriaensen, Steven</creatorcontrib><creatorcontrib>Hutter, Frank</creatorcontrib><creatorcontrib>Lindauer, Marius</creatorcontrib><title>DACBench: A Benchmark Library for Dynamic Algorithm Configuration</title><title>arXiv.org</title><description>Dynamic Algorithm Configuration (DAC) aims to dynamically control a target algorithm's hyperparameters in order to improve its performance. Several theoretical and empirical results have demonstrated the benefits of dynamically controlling hyperparameters in domains like evolutionary computation, AI Planning or deep learning. Replicating these results, as well as studying new methods for DAC, however, is difficult since existing benchmarks are often specialized and incompatible with the same interfaces. To facilitate benchmarking and thus research on DAC, we propose DACBench, a benchmark library that seeks to collect and standardize existing DAC benchmarks from different AI domains, as well as provide a template for new ones. For the design of DACBench, we focused on important desiderata, such as (i) flexibility, (ii) reproducibility, (iii) extensibility and (iv) automatic documentation and visualization. To show the potential, broad applicability and challenges of DAC, we explore how a set of six initial benchmarks compare in several dimensions of difficulty.</description><subject>Algorithms</subject><subject>Benchmarks</subject><subject>Configurations</subject><subject>Domains</subject><subject>Evolutionary algorithms</subject><subject>Evolutionary computation</subject><subject>Libraries</subject><subject>Machine learning</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRwdHF0dkrNS86wUnBUADNyE4uyFXwyk4oSiyoV0vKLFFwq8xJzM5MVHHPS84sySzJyFZzz89Iy00uLEksy8_N4GFjTEnOKU3mhNDeDsptriLOHbkFRfmFpanFJfFZ-aVEeUCreyNTI0sDIwsLc3Jg4VQDjwziY</recordid><startdate>20210518</startdate><enddate>20210518</enddate><creator>Eimer, Theresa</creator><creator>Biedenkapp, André</creator><creator>Reimer, Maximilian</creator><creator>Adriaensen, Steven</creator><creator>Hutter, Frank</creator><creator>Lindauer, Marius</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20210518</creationdate><title>DACBench: A Benchmark Library for Dynamic Algorithm Configuration</title><author>Eimer, Theresa ; Biedenkapp, André ; Reimer, Maximilian ; Adriaensen, Steven ; Hutter, Frank ; Lindauer, Marius</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_25290288773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Benchmarks</topic><topic>Configurations</topic><topic>Domains</topic><topic>Evolutionary algorithms</topic><topic>Evolutionary computation</topic><topic>Libraries</topic><topic>Machine learning</topic><toplevel>online_resources</toplevel><creatorcontrib>Eimer, Theresa</creatorcontrib><creatorcontrib>Biedenkapp, André</creatorcontrib><creatorcontrib>Reimer, Maximilian</creatorcontrib><creatorcontrib>Adriaensen, Steven</creatorcontrib><creatorcontrib>Hutter, Frank</creatorcontrib><creatorcontrib>Lindauer, Marius</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Eimer, Theresa</au><au>Biedenkapp, André</au><au>Reimer, Maximilian</au><au>Adriaensen, Steven</au><au>Hutter, Frank</au><au>Lindauer, Marius</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>DACBench: A Benchmark Library for Dynamic Algorithm Configuration</atitle><jtitle>arXiv.org</jtitle><date>2021-05-18</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>Dynamic Algorithm Configuration (DAC) aims to dynamically control a target algorithm's hyperparameters in order to improve its performance. Several theoretical and empirical results have demonstrated the benefits of dynamically controlling hyperparameters in domains like evolutionary computation, AI Planning or deep learning. Replicating these results, as well as studying new methods for DAC, however, is difficult since existing benchmarks are often specialized and incompatible with the same interfaces. To facilitate benchmarking and thus research on DAC, we propose DACBench, a benchmark library that seeks to collect and standardize existing DAC benchmarks from different AI domains, as well as provide a template for new ones. For the design of DACBench, we focused on important desiderata, such as (i) flexibility, (ii) reproducibility, (iii) extensibility and (iv) automatic documentation and visualization. To show the potential, broad applicability and challenges of DAC, we explore how a set of six initial benchmarks compare in several dimensions of difficulty.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2021-05
issn 2331-8422
language eng
recordid cdi_proquest_journals_2529028877
source Free E- Journals
subjects Algorithms
Benchmarks
Configurations
Domains
Evolutionary algorithms
Evolutionary computation
Libraries
Machine learning
title DACBench: A Benchmark Library for Dynamic Algorithm Configuration
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T10%3A55%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=DACBench:%20A%20Benchmark%20Library%20for%20Dynamic%20Algorithm%20Configuration&rft.jtitle=arXiv.org&rft.au=Eimer,%20Theresa&rft.date=2021-05-18&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2529028877%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2529028877&rft_id=info:pmid/&rfr_iscdi=true