A Review of Graphene Nanoribbon Field-Effect Transistor Structures

The ascending trend of Moore’s law has stretched to the horizon, where the prospects of carbon-based materials show the potential of replacing the silicon-based complementary metal-oxide semiconductor technology. These alternatives include nanowire transistors, carbon nanotube field-effect transisto...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of electronic materials 2021-06, Vol.50 (6), p.3169-3186
Hauptverfasser: Lone, Sanna, Bhardwaj, Anil, Pandit, Amit Kant, Gupta, Sumeet, Mahajan, Shubham
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3186
container_issue 6
container_start_page 3169
container_title Journal of electronic materials
container_volume 50
creator Lone, Sanna
Bhardwaj, Anil
Pandit, Amit Kant
Gupta, Sumeet
Mahajan, Shubham
description The ascending trend of Moore’s law has stretched to the horizon, where the prospects of carbon-based materials show the potential of replacing the silicon-based complementary metal-oxide semiconductor technology. These alternatives include nanowire transistors, carbon nanotube field-effect transistors, quantum-dot cellular automata, and graphene nanoribbon field-effect transistors (GNRFETs). This paper presents a review of the evolution of graphene, its fabrication process, and graphene-based field-effect transistor device structures. The diverse features of graphene as a material are derived from its structural, electronic, and thermal properties. A brief review of the techniques utilized for the fabrication of GNRFETs is mentioned in this paper. GNRFETs are based on excellent electrical properties that include strong ballistic transport, high current ratio, better compatibility with high K dielectrics, high electron mobility, reliability, scalability, and transconductance. GNRFET structures are reviewed for several aspects which include the I on / I off ratio, subthreshold swing, oxide thickness, high K dielectrics, etc. that help to monitor the improvement in the performance of GNRFET devices. A comparison of the structures is presented to help researchers have a fair idea of the impact of modifications on device performance. The compact model used to simulate GNRFET-based devices is also included in this paper. GNRFET-based devices have several applications to offer in the current scenario. This paper also reports several applications of present GNRFET-based devices.
doi_str_mv 10.1007/s11664-021-08859-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2529012921</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2529012921</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-3a3cf8dafc4f9fb79e7e0db1865310464105ca617324a93726c854e6817b40993</originalsourceid><addsrcrecordid>eNp9kE1LAzEURYMoWKt_wNWA62heviZZ1tJWoShoBXchkyY6pU5qMqP03zs6gjtXb3PuvY-D0DmQSyCkvMoAUnJMKGCilNB4f4BGIDjDoOTzIRoRJgELysQxOsl5QwgIUDBC15PiwX_U_rOIoVgku3v1jS_ubBNTXVWxKea1367xLATv2mKVbJPr3MZUPLapc22XfD5FR8Fusz_7vWP0NJ-tpjd4eb-4nU6W2DElWswsc0GtbXA86FCV2peerKv-P8GAcMmBCGcllIxyq1lJpVOCe6mgrDjRmo3RxdC7S_G987k1m9ilpp80VFBNgGoKPUUHyqWYc_LB7FL9ZtPeADHfrszgyvSuzI8rs-9DbAjlHm5efPqr_if1BZPga6U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2529012921</pqid></control><display><type>article</type><title>A Review of Graphene Nanoribbon Field-Effect Transistor Structures</title><source>SpringerLink Journals - AutoHoldings</source><creator>Lone, Sanna ; Bhardwaj, Anil ; Pandit, Amit Kant ; Gupta, Sumeet ; Mahajan, Shubham</creator><creatorcontrib>Lone, Sanna ; Bhardwaj, Anil ; Pandit, Amit Kant ; Gupta, Sumeet ; Mahajan, Shubham</creatorcontrib><description>The ascending trend of Moore’s law has stretched to the horizon, where the prospects of carbon-based materials show the potential of replacing the silicon-based complementary metal-oxide semiconductor technology. These alternatives include nanowire transistors, carbon nanotube field-effect transistors, quantum-dot cellular automata, and graphene nanoribbon field-effect transistors (GNRFETs). This paper presents a review of the evolution of graphene, its fabrication process, and graphene-based field-effect transistor device structures. The diverse features of graphene as a material are derived from its structural, electronic, and thermal properties. A brief review of the techniques utilized for the fabrication of GNRFETs is mentioned in this paper. GNRFETs are based on excellent electrical properties that include strong ballistic transport, high current ratio, better compatibility with high K dielectrics, high electron mobility, reliability, scalability, and transconductance. GNRFET structures are reviewed for several aspects which include the I on / I off ratio, subthreshold swing, oxide thickness, high K dielectrics, etc. that help to monitor the improvement in the performance of GNRFET devices. A comparison of the structures is presented to help researchers have a fair idea of the impact of modifications on device performance. The compact model used to simulate GNRFET-based devices is also included in this paper. GNRFET-based devices have several applications to offer in the current scenario. This paper also reports several applications of present GNRFET-based devices.</description><identifier>ISSN: 0361-5235</identifier><identifier>EISSN: 1543-186X</identifier><identifier>DOI: 10.1007/s11664-021-08859-y</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Carbon nanotubes ; Cellular automata ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; CMOS ; Dielectric strength ; Electrical properties ; Electron mobility ; Electronics and Microelectronics ; Field effect transistors ; Graphene ; Instrumentation ; Materials Science ; Nanoribbons ; Nanowires ; Optical and Electronic Materials ; Quantum dots ; Reliability aspects ; Review Article ; Semiconductor devices ; Solid State Physics ; Thermodynamic properties ; Transconductance ; Transistors</subject><ispartof>Journal of electronic materials, 2021-06, Vol.50 (6), p.3169-3186</ispartof><rights>The Minerals, Metals &amp; Materials Society 2021</rights><rights>The Minerals, Metals &amp; Materials Society 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-3a3cf8dafc4f9fb79e7e0db1865310464105ca617324a93726c854e6817b40993</citedby><cites>FETCH-LOGICAL-c385t-3a3cf8dafc4f9fb79e7e0db1865310464105ca617324a93726c854e6817b40993</cites><orcidid>0000-0002-8735-1094</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11664-021-08859-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11664-021-08859-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Lone, Sanna</creatorcontrib><creatorcontrib>Bhardwaj, Anil</creatorcontrib><creatorcontrib>Pandit, Amit Kant</creatorcontrib><creatorcontrib>Gupta, Sumeet</creatorcontrib><creatorcontrib>Mahajan, Shubham</creatorcontrib><title>A Review of Graphene Nanoribbon Field-Effect Transistor Structures</title><title>Journal of electronic materials</title><addtitle>Journal of Elec Materi</addtitle><description>The ascending trend of Moore’s law has stretched to the horizon, where the prospects of carbon-based materials show the potential of replacing the silicon-based complementary metal-oxide semiconductor technology. These alternatives include nanowire transistors, carbon nanotube field-effect transistors, quantum-dot cellular automata, and graphene nanoribbon field-effect transistors (GNRFETs). This paper presents a review of the evolution of graphene, its fabrication process, and graphene-based field-effect transistor device structures. The diverse features of graphene as a material are derived from its structural, electronic, and thermal properties. A brief review of the techniques utilized for the fabrication of GNRFETs is mentioned in this paper. GNRFETs are based on excellent electrical properties that include strong ballistic transport, high current ratio, better compatibility with high K dielectrics, high electron mobility, reliability, scalability, and transconductance. GNRFET structures are reviewed for several aspects which include the I on / I off ratio, subthreshold swing, oxide thickness, high K dielectrics, etc. that help to monitor the improvement in the performance of GNRFET devices. A comparison of the structures is presented to help researchers have a fair idea of the impact of modifications on device performance. The compact model used to simulate GNRFET-based devices is also included in this paper. GNRFET-based devices have several applications to offer in the current scenario. This paper also reports several applications of present GNRFET-based devices.</description><subject>Carbon nanotubes</subject><subject>Cellular automata</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>CMOS</subject><subject>Dielectric strength</subject><subject>Electrical properties</subject><subject>Electron mobility</subject><subject>Electronics and Microelectronics</subject><subject>Field effect transistors</subject><subject>Graphene</subject><subject>Instrumentation</subject><subject>Materials Science</subject><subject>Nanoribbons</subject><subject>Nanowires</subject><subject>Optical and Electronic Materials</subject><subject>Quantum dots</subject><subject>Reliability aspects</subject><subject>Review Article</subject><subject>Semiconductor devices</subject><subject>Solid State Physics</subject><subject>Thermodynamic properties</subject><subject>Transconductance</subject><subject>Transistors</subject><issn>0361-5235</issn><issn>1543-186X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kE1LAzEURYMoWKt_wNWA62heviZZ1tJWoShoBXchkyY6pU5qMqP03zs6gjtXb3PuvY-D0DmQSyCkvMoAUnJMKGCilNB4f4BGIDjDoOTzIRoRJgELysQxOsl5QwgIUDBC15PiwX_U_rOIoVgku3v1jS_ubBNTXVWxKea1367xLATv2mKVbJPr3MZUPLapc22XfD5FR8Fusz_7vWP0NJ-tpjd4eb-4nU6W2DElWswsc0GtbXA86FCV2peerKv-P8GAcMmBCGcllIxyq1lJpVOCe6mgrDjRmo3RxdC7S_G987k1m9ilpp80VFBNgGoKPUUHyqWYc_LB7FL9ZtPeADHfrszgyvSuzI8rs-9DbAjlHm5efPqr_if1BZPga6U</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Lone, Sanna</creator><creator>Bhardwaj, Anil</creator><creator>Pandit, Amit Kant</creator><creator>Gupta, Sumeet</creator><creator>Mahajan, Shubham</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope><orcidid>https://orcid.org/0000-0002-8735-1094</orcidid></search><sort><creationdate>20210601</creationdate><title>A Review of Graphene Nanoribbon Field-Effect Transistor Structures</title><author>Lone, Sanna ; Bhardwaj, Anil ; Pandit, Amit Kant ; Gupta, Sumeet ; Mahajan, Shubham</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-3a3cf8dafc4f9fb79e7e0db1865310464105ca617324a93726c854e6817b40993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Carbon nanotubes</topic><topic>Cellular automata</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>CMOS</topic><topic>Dielectric strength</topic><topic>Electrical properties</topic><topic>Electron mobility</topic><topic>Electronics and Microelectronics</topic><topic>Field effect transistors</topic><topic>Graphene</topic><topic>Instrumentation</topic><topic>Materials Science</topic><topic>Nanoribbons</topic><topic>Nanowires</topic><topic>Optical and Electronic Materials</topic><topic>Quantum dots</topic><topic>Reliability aspects</topic><topic>Review Article</topic><topic>Semiconductor devices</topic><topic>Solid State Physics</topic><topic>Thermodynamic properties</topic><topic>Transconductance</topic><topic>Transistors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lone, Sanna</creatorcontrib><creatorcontrib>Bhardwaj, Anil</creatorcontrib><creatorcontrib>Pandit, Amit Kant</creatorcontrib><creatorcontrib>Gupta, Sumeet</creatorcontrib><creatorcontrib>Mahajan, Shubham</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Journal of electronic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lone, Sanna</au><au>Bhardwaj, Anil</au><au>Pandit, Amit Kant</au><au>Gupta, Sumeet</au><au>Mahajan, Shubham</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Review of Graphene Nanoribbon Field-Effect Transistor Structures</atitle><jtitle>Journal of electronic materials</jtitle><stitle>Journal of Elec Materi</stitle><date>2021-06-01</date><risdate>2021</risdate><volume>50</volume><issue>6</issue><spage>3169</spage><epage>3186</epage><pages>3169-3186</pages><issn>0361-5235</issn><eissn>1543-186X</eissn><abstract>The ascending trend of Moore’s law has stretched to the horizon, where the prospects of carbon-based materials show the potential of replacing the silicon-based complementary metal-oxide semiconductor technology. These alternatives include nanowire transistors, carbon nanotube field-effect transistors, quantum-dot cellular automata, and graphene nanoribbon field-effect transistors (GNRFETs). This paper presents a review of the evolution of graphene, its fabrication process, and graphene-based field-effect transistor device structures. The diverse features of graphene as a material are derived from its structural, electronic, and thermal properties. A brief review of the techniques utilized for the fabrication of GNRFETs is mentioned in this paper. GNRFETs are based on excellent electrical properties that include strong ballistic transport, high current ratio, better compatibility with high K dielectrics, high electron mobility, reliability, scalability, and transconductance. GNRFET structures are reviewed for several aspects which include the I on / I off ratio, subthreshold swing, oxide thickness, high K dielectrics, etc. that help to monitor the improvement in the performance of GNRFET devices. A comparison of the structures is presented to help researchers have a fair idea of the impact of modifications on device performance. The compact model used to simulate GNRFET-based devices is also included in this paper. GNRFET-based devices have several applications to offer in the current scenario. This paper also reports several applications of present GNRFET-based devices.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11664-021-08859-y</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-8735-1094</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0361-5235
ispartof Journal of electronic materials, 2021-06, Vol.50 (6), p.3169-3186
issn 0361-5235
1543-186X
language eng
recordid cdi_proquest_journals_2529012921
source SpringerLink Journals - AutoHoldings
subjects Carbon nanotubes
Cellular automata
Characterization and Evaluation of Materials
Chemistry and Materials Science
CMOS
Dielectric strength
Electrical properties
Electron mobility
Electronics and Microelectronics
Field effect transistors
Graphene
Instrumentation
Materials Science
Nanoribbons
Nanowires
Optical and Electronic Materials
Quantum dots
Reliability aspects
Review Article
Semiconductor devices
Solid State Physics
Thermodynamic properties
Transconductance
Transistors
title A Review of Graphene Nanoribbon Field-Effect Transistor Structures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T07%3A27%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Review%20of%20Graphene%20Nanoribbon%20Field-Effect%20Transistor%20Structures&rft.jtitle=Journal%20of%20electronic%20materials&rft.au=Lone,%20Sanna&rft.date=2021-06-01&rft.volume=50&rft.issue=6&rft.spage=3169&rft.epage=3186&rft.pages=3169-3186&rft.issn=0361-5235&rft.eissn=1543-186X&rft_id=info:doi/10.1007/s11664-021-08859-y&rft_dat=%3Cproquest_cross%3E2529012921%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2529012921&rft_id=info:pmid/&rfr_iscdi=true