Biochar Derived from Treated Lotus Stem and Adsorption of Phthalic Acid Esters
Phthalic acid ester (PAE), a plasticizer, is increasingly being detected in different environments. These compounds can gravely affect the human endocrine system. The present study aims to prepare adsorbents that can effectively adsorb PAE pollutants. To fabricate a better carbon structure than conv...
Gespeichert in:
Veröffentlicht in: | Water, air, and soil pollution air, and soil pollution, 2021-06, Vol.232 (6), Article 224 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 6 |
container_start_page | |
container_title | Water, air, and soil pollution |
container_volume | 232 |
creator | Zhang, Ruiling Chen, Linlin Qiu, Binbin Sun, Xiaojing Qin, Songyan Wang, Bo Li, Feiyue Zhao, Lixin Zhu, Zhe |
description | Phthalic acid ester (PAE), a plasticizer, is increasingly being detected in different environments. These compounds can gravely affect the human endocrine system. The present study aims to prepare adsorbents that can effectively adsorb PAE pollutants. To fabricate a better carbon structure than conventional biochar, the sodium hydroxide solution was used as a hydrolyzing agent to pretreat the biomass in order to weaken the bonds in lignin, cellulose, and hemicellulose. As a result, biochar with a special porous carbon structure is obtained. To study the characteristics of the biochar and its adsorption properties, dimethyl phthalate (DMP)—a PAE—was selected as the adsorbate. The morphology and structural composition of the biochar were examined via an environment scanning electron microscope with a field emission gun (SEM), surface area analyzer (BET), Fourier transform infrared spectrometer (FTIR), thermal gravimetry (TG/DTG), X-ray diffractometry (XRD), and Raman spectroscopy. The BET data of the biochar increased by 125.3 times than that of the original biochar. The layer spacing and the surface functional groups of the pretreated biochar also increased. After performing the micro-morphological regulation of biomass using sodium hydroxide, the adsorption performance of biochar with regard to PAE effectively improved and an adsorption capacity of 125 mg/g was observed for DMP. The adsorption kinetics and thermodynamic experiments showed that DMP adsorption by biochar follows the Langmuir and pseudo-second-order models. |
doi_str_mv | 10.1007/s11270-021-05130-2 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2529009026</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A662385895</galeid><sourcerecordid>A662385895</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-5aa0a9f8ca72fff86c37310e6ec60b3095a8f74313821ac3b55362cfb85cd1033</originalsourceid><addsrcrecordid>eNp9kE1PAyEQhonRxFr9A55IPG8doOzCsdb6kTRqYj0TykJL0y4VqIn_XnRNvDlzmMzkfWbgReiSwIgANNeJENpABZRUwAmDih6hAeENq6hk9BgNAMayqmUjT9FZShsoIUUzQE83Ppi1jvjWRv9hW-xi2OFFtDqXZh7yIeHXbHdYdy2etCnEffahw8Hhl3Ve6603eGJ8i2cp25jO0YnT22QvfusQvd3NFtOHav58_zidzCvDuMgV1xq0dMLohjrnRG1YwwjY2poalgwk18I1Y0aYoEQbtuSc1dS4peCmJcDYEF31e_cxvB9symoTDrErJxXlVJbPAa2LatSrVnprle9cyFGbkq3deRM663yZT-qaMsGF5AWgPWBiSClap_bR73T8VATUt9GqN1oVo9WP0YoWiPVQKuJuZePfW_6hvgBbj37V</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2529009026</pqid></control><display><type>article</type><title>Biochar Derived from Treated Lotus Stem and Adsorption of Phthalic Acid Esters</title><source>SpringerLink Journals - AutoHoldings</source><creator>Zhang, Ruiling ; Chen, Linlin ; Qiu, Binbin ; Sun, Xiaojing ; Qin, Songyan ; Wang, Bo ; Li, Feiyue ; Zhao, Lixin ; Zhu, Zhe</creator><creatorcontrib>Zhang, Ruiling ; Chen, Linlin ; Qiu, Binbin ; Sun, Xiaojing ; Qin, Songyan ; Wang, Bo ; Li, Feiyue ; Zhao, Lixin ; Zhu, Zhe</creatorcontrib><description>Phthalic acid ester (PAE), a plasticizer, is increasingly being detected in different environments. These compounds can gravely affect the human endocrine system. The present study aims to prepare adsorbents that can effectively adsorb PAE pollutants. To fabricate a better carbon structure than conventional biochar, the sodium hydroxide solution was used as a hydrolyzing agent to pretreat the biomass in order to weaken the bonds in lignin, cellulose, and hemicellulose. As a result, biochar with a special porous carbon structure is obtained. To study the characteristics of the biochar and its adsorption properties, dimethyl phthalate (DMP)—a PAE—was selected as the adsorbate. The morphology and structural composition of the biochar were examined via an environment scanning electron microscope with a field emission gun (SEM), surface area analyzer (BET), Fourier transform infrared spectrometer (FTIR), thermal gravimetry (TG/DTG), X-ray diffractometry (XRD), and Raman spectroscopy. The BET data of the biochar increased by 125.3 times than that of the original biochar. The layer spacing and the surface functional groups of the pretreated biochar also increased. After performing the micro-morphological regulation of biomass using sodium hydroxide, the adsorption performance of biochar with regard to PAE effectively improved and an adsorption capacity of 125 mg/g was observed for DMP. The adsorption kinetics and thermodynamic experiments showed that DMP adsorption by biochar follows the Langmuir and pseudo-second-order models.</description><identifier>ISSN: 0049-6979</identifier><identifier>EISSN: 1573-2932</identifier><identifier>DOI: 10.1007/s11270-021-05130-2</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Adsorbates ; Adsorption ; Analytical methods ; Atmospheric Protection/Air Quality Control/Air Pollution ; Biomass ; Bonding agents ; Bonding strength ; Carbon ; Caustic soda ; Cellulose ; Charcoal ; Climate Change/Climate Change Impacts ; Earth and Environmental Science ; Emission analysis ; Endocrine system ; Environment ; Environmental monitoring ; Esters ; Field emission microscopy ; Fourier transforms ; FTIR spectrometers ; Functional groups ; Gravimetric analysis ; Gravimetry ; Hemicellulose ; Hydrogeology ; Hydroxides ; Infrared analysis ; Infrared spectrometers ; Kinetics ; Lignin ; Morphology ; Phthalate esters ; Phthalates ; Phthalic acid ; Pollutants ; Raman spectroscopy ; Scanning electron microscopy ; Sodium ; Sodium hydroxide ; Soil Science & Conservation ; Surface chemistry ; Water Quality/Water Pollution</subject><ispartof>Water, air, and soil pollution, 2021-06, Vol.232 (6), Article 224</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021</rights><rights>COPYRIGHT 2021 Springer</rights><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-5aa0a9f8ca72fff86c37310e6ec60b3095a8f74313821ac3b55362cfb85cd1033</citedby><cites>FETCH-LOGICAL-c358t-5aa0a9f8ca72fff86c37310e6ec60b3095a8f74313821ac3b55362cfb85cd1033</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11270-021-05130-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11270-021-05130-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Zhang, Ruiling</creatorcontrib><creatorcontrib>Chen, Linlin</creatorcontrib><creatorcontrib>Qiu, Binbin</creatorcontrib><creatorcontrib>Sun, Xiaojing</creatorcontrib><creatorcontrib>Qin, Songyan</creatorcontrib><creatorcontrib>Wang, Bo</creatorcontrib><creatorcontrib>Li, Feiyue</creatorcontrib><creatorcontrib>Zhao, Lixin</creatorcontrib><creatorcontrib>Zhu, Zhe</creatorcontrib><title>Biochar Derived from Treated Lotus Stem and Adsorption of Phthalic Acid Esters</title><title>Water, air, and soil pollution</title><addtitle>Water Air Soil Pollut</addtitle><description>Phthalic acid ester (PAE), a plasticizer, is increasingly being detected in different environments. These compounds can gravely affect the human endocrine system. The present study aims to prepare adsorbents that can effectively adsorb PAE pollutants. To fabricate a better carbon structure than conventional biochar, the sodium hydroxide solution was used as a hydrolyzing agent to pretreat the biomass in order to weaken the bonds in lignin, cellulose, and hemicellulose. As a result, biochar with a special porous carbon structure is obtained. To study the characteristics of the biochar and its adsorption properties, dimethyl phthalate (DMP)—a PAE—was selected as the adsorbate. The morphology and structural composition of the biochar were examined via an environment scanning electron microscope with a field emission gun (SEM), surface area analyzer (BET), Fourier transform infrared spectrometer (FTIR), thermal gravimetry (TG/DTG), X-ray diffractometry (XRD), and Raman spectroscopy. The BET data of the biochar increased by 125.3 times than that of the original biochar. The layer spacing and the surface functional groups of the pretreated biochar also increased. After performing the micro-morphological regulation of biomass using sodium hydroxide, the adsorption performance of biochar with regard to PAE effectively improved and an adsorption capacity of 125 mg/g was observed for DMP. The adsorption kinetics and thermodynamic experiments showed that DMP adsorption by biochar follows the Langmuir and pseudo-second-order models.</description><subject>Adsorbates</subject><subject>Adsorption</subject><subject>Analytical methods</subject><subject>Atmospheric Protection/Air Quality Control/Air Pollution</subject><subject>Biomass</subject><subject>Bonding agents</subject><subject>Bonding strength</subject><subject>Carbon</subject><subject>Caustic soda</subject><subject>Cellulose</subject><subject>Charcoal</subject><subject>Climate Change/Climate Change Impacts</subject><subject>Earth and Environmental Science</subject><subject>Emission analysis</subject><subject>Endocrine system</subject><subject>Environment</subject><subject>Environmental monitoring</subject><subject>Esters</subject><subject>Field emission microscopy</subject><subject>Fourier transforms</subject><subject>FTIR spectrometers</subject><subject>Functional groups</subject><subject>Gravimetric analysis</subject><subject>Gravimetry</subject><subject>Hemicellulose</subject><subject>Hydrogeology</subject><subject>Hydroxides</subject><subject>Infrared analysis</subject><subject>Infrared spectrometers</subject><subject>Kinetics</subject><subject>Lignin</subject><subject>Morphology</subject><subject>Phthalate esters</subject><subject>Phthalates</subject><subject>Phthalic acid</subject><subject>Pollutants</subject><subject>Raman spectroscopy</subject><subject>Scanning electron microscopy</subject><subject>Sodium</subject><subject>Sodium hydroxide</subject><subject>Soil Science & Conservation</subject><subject>Surface chemistry</subject><subject>Water Quality/Water Pollution</subject><issn>0049-6979</issn><issn>1573-2932</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kE1PAyEQhonRxFr9A55IPG8doOzCsdb6kTRqYj0TykJL0y4VqIn_XnRNvDlzmMzkfWbgReiSwIgANNeJENpABZRUwAmDih6hAeENq6hk9BgNAMayqmUjT9FZShsoIUUzQE83Ppi1jvjWRv9hW-xi2OFFtDqXZh7yIeHXbHdYdy2etCnEffahw8Hhl3Ve6603eGJ8i2cp25jO0YnT22QvfusQvd3NFtOHav58_zidzCvDuMgV1xq0dMLohjrnRG1YwwjY2poalgwk18I1Y0aYoEQbtuSc1dS4peCmJcDYEF31e_cxvB9symoTDrErJxXlVJbPAa2LatSrVnprle9cyFGbkq3deRM663yZT-qaMsGF5AWgPWBiSClap_bR73T8VATUt9GqN1oVo9WP0YoWiPVQKuJuZePfW_6hvgBbj37V</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Zhang, Ruiling</creator><creator>Chen, Linlin</creator><creator>Qiu, Binbin</creator><creator>Sun, Xiaojing</creator><creator>Qin, Songyan</creator><creator>Wang, Bo</creator><creator>Li, Feiyue</creator><creator>Zhao, Lixin</creator><creator>Zhu, Zhe</creator><general>Springer International Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7T7</scope><scope>7TV</scope><scope>7U7</scope><scope>7UA</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88E</scope><scope>88I</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H96</scope><scope>H97</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>L.G</scope><scope>M0C</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>20210601</creationdate><title>Biochar Derived from Treated Lotus Stem and Adsorption of Phthalic Acid Esters</title><author>Zhang, Ruiling ; Chen, Linlin ; Qiu, Binbin ; Sun, Xiaojing ; Qin, Songyan ; Wang, Bo ; Li, Feiyue ; Zhao, Lixin ; Zhu, Zhe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-5aa0a9f8ca72fff86c37310e6ec60b3095a8f74313821ac3b55362cfb85cd1033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adsorbates</topic><topic>Adsorption</topic><topic>Analytical methods</topic><topic>Atmospheric Protection/Air Quality Control/Air Pollution</topic><topic>Biomass</topic><topic>Bonding agents</topic><topic>Bonding strength</topic><topic>Carbon</topic><topic>Caustic soda</topic><topic>Cellulose</topic><topic>Charcoal</topic><topic>Climate Change/Climate Change Impacts</topic><topic>Earth and Environmental Science</topic><topic>Emission analysis</topic><topic>Endocrine system</topic><topic>Environment</topic><topic>Environmental monitoring</topic><topic>Esters</topic><topic>Field emission microscopy</topic><topic>Fourier transforms</topic><topic>FTIR spectrometers</topic><topic>Functional groups</topic><topic>Gravimetric analysis</topic><topic>Gravimetry</topic><topic>Hemicellulose</topic><topic>Hydrogeology</topic><topic>Hydroxides</topic><topic>Infrared analysis</topic><topic>Infrared spectrometers</topic><topic>Kinetics</topic><topic>Lignin</topic><topic>Morphology</topic><topic>Phthalate esters</topic><topic>Phthalates</topic><topic>Phthalic acid</topic><topic>Pollutants</topic><topic>Raman spectroscopy</topic><topic>Scanning electron microscopy</topic><topic>Sodium</topic><topic>Sodium hydroxide</topic><topic>Soil Science & Conservation</topic><topic>Surface chemistry</topic><topic>Water Quality/Water Pollution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Ruiling</creatorcontrib><creatorcontrib>Chen, Linlin</creatorcontrib><creatorcontrib>Qiu, Binbin</creatorcontrib><creatorcontrib>Sun, Xiaojing</creatorcontrib><creatorcontrib>Qin, Songyan</creatorcontrib><creatorcontrib>Wang, Bo</creatorcontrib><creatorcontrib>Li, Feiyue</creatorcontrib><creatorcontrib>Zhao, Lixin</creatorcontrib><creatorcontrib>Zhu, Zhe</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Pollution Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Water, air, and soil pollution</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Ruiling</au><au>Chen, Linlin</au><au>Qiu, Binbin</au><au>Sun, Xiaojing</au><au>Qin, Songyan</au><au>Wang, Bo</au><au>Li, Feiyue</au><au>Zhao, Lixin</au><au>Zhu, Zhe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biochar Derived from Treated Lotus Stem and Adsorption of Phthalic Acid Esters</atitle><jtitle>Water, air, and soil pollution</jtitle><stitle>Water Air Soil Pollut</stitle><date>2021-06-01</date><risdate>2021</risdate><volume>232</volume><issue>6</issue><artnum>224</artnum><issn>0049-6979</issn><eissn>1573-2932</eissn><abstract>Phthalic acid ester (PAE), a plasticizer, is increasingly being detected in different environments. These compounds can gravely affect the human endocrine system. The present study aims to prepare adsorbents that can effectively adsorb PAE pollutants. To fabricate a better carbon structure than conventional biochar, the sodium hydroxide solution was used as a hydrolyzing agent to pretreat the biomass in order to weaken the bonds in lignin, cellulose, and hemicellulose. As a result, biochar with a special porous carbon structure is obtained. To study the characteristics of the biochar and its adsorption properties, dimethyl phthalate (DMP)—a PAE—was selected as the adsorbate. The morphology and structural composition of the biochar were examined via an environment scanning electron microscope with a field emission gun (SEM), surface area analyzer (BET), Fourier transform infrared spectrometer (FTIR), thermal gravimetry (TG/DTG), X-ray diffractometry (XRD), and Raman spectroscopy. The BET data of the biochar increased by 125.3 times than that of the original biochar. The layer spacing and the surface functional groups of the pretreated biochar also increased. After performing the micro-morphological regulation of biomass using sodium hydroxide, the adsorption performance of biochar with regard to PAE effectively improved and an adsorption capacity of 125 mg/g was observed for DMP. The adsorption kinetics and thermodynamic experiments showed that DMP adsorption by biochar follows the Langmuir and pseudo-second-order models.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s11270-021-05130-2</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0049-6979 |
ispartof | Water, air, and soil pollution, 2021-06, Vol.232 (6), Article 224 |
issn | 0049-6979 1573-2932 |
language | eng |
recordid | cdi_proquest_journals_2529009026 |
source | SpringerLink Journals - AutoHoldings |
subjects | Adsorbates Adsorption Analytical methods Atmospheric Protection/Air Quality Control/Air Pollution Biomass Bonding agents Bonding strength Carbon Caustic soda Cellulose Charcoal Climate Change/Climate Change Impacts Earth and Environmental Science Emission analysis Endocrine system Environment Environmental monitoring Esters Field emission microscopy Fourier transforms FTIR spectrometers Functional groups Gravimetric analysis Gravimetry Hemicellulose Hydrogeology Hydroxides Infrared analysis Infrared spectrometers Kinetics Lignin Morphology Phthalate esters Phthalates Phthalic acid Pollutants Raman spectroscopy Scanning electron microscopy Sodium Sodium hydroxide Soil Science & Conservation Surface chemistry Water Quality/Water Pollution |
title | Biochar Derived from Treated Lotus Stem and Adsorption of Phthalic Acid Esters |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T17%3A40%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biochar%20Derived%20from%20Treated%20Lotus%20Stem%20and%20Adsorption%20of%20Phthalic%20Acid%20Esters&rft.jtitle=Water,%20air,%20and%20soil%20pollution&rft.au=Zhang,%20Ruiling&rft.date=2021-06-01&rft.volume=232&rft.issue=6&rft.artnum=224&rft.issn=0049-6979&rft.eissn=1573-2932&rft_id=info:doi/10.1007/s11270-021-05130-2&rft_dat=%3Cgale_proqu%3EA662385895%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2529009026&rft_id=info:pmid/&rft_galeid=A662385895&rfr_iscdi=true |