Constructing accuracy and diversity ensemble using Pareto-based multi-objective learning for evolving data streams
Ensemble learning is one of the most frequently used techniques for handling concept drift, which is the greatest challenge for learning high-performance models from big evolving data streams. In this paper, a Pareto-based multi-objective optimization technique is introduced to learn high-performanc...
Gespeichert in:
Veröffentlicht in: | Neural computing & applications 2021-06, Vol.33 (11), p.6119-6132 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Schreiben Sie den ersten Kommentar!