Robust Exponential Stability Analysis for Stochastic Systems With Actuator Faults Using Improved Weighted Relaxed Integral Inequality
In this paper, the problem of the exponential stability criterion for stochastic delayed systems with actuator failures is investigated via weighted relaxed integral inequality. A suitable Lyapunov-Krasovskii functional (LKF) candidate is adapted to derive the sufficient conditions that guarantee th...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on systems, man, and cybernetics. Systems man, and cybernetics. Systems, 2021-06, Vol.51 (6), p.3346-3357 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3357 |
---|---|
container_issue | 6 |
container_start_page | 3346 |
container_title | IEEE transactions on systems, man, and cybernetics. Systems |
container_volume | 51 |
creator | Gnaneswaran, Nagamani Chinnasamy, Karthik Ramasamy, Subramaniam Zhu, Quanxin |
description | In this paper, the problem of the exponential stability criterion for stochastic delayed systems with actuator failures is investigated via weighted relaxed integral inequality. A suitable Lyapunov-Krasovskii functional (LKF) candidate is adapted to derive the sufficient conditions that guarantee the exponential stability of the considered stochastic system. The main concerned problem is to estimate stronger upper bounds than the conventional ones for the integral terms induced through the derivative LKF. For this estimation process, combining the weighted integral inequality together with the reciprocal convex lemma, a new type of relaxed-based integral inequality is introduced to bound the integral term based on the weighted integral inequality. By making the use of derived inequality, the desired exponential stability conditions are established by means of linear matrix inequalities (LMIs). Lastly, the applicability and superiority of the proposed theoretical results over the existing ones are examined in virtue of numerical examples. |
doi_str_mv | 10.1109/TSMC.2019.2924327 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2528945104</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8755480</ieee_id><sourcerecordid>2528945104</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-26f9c82e81b573b68e88699d1bc09f437c6638d06e754a8f757d525e23c654fe3</originalsourceid><addsrcrecordid>eNo9UF1rwjAULWODifMHjL0E9qzLR5MmjyK6CY6BH_hY0nirkdpqkw79AfvfS1F8OofLOffce6LoleABIVh9LBffowHFRA2oojGjyUPUoUTIPqWMPt45Ec9Rz7k9xphQKRgWnehvXmWN82h8PlYllN7qAi28zmxh_QUNS11cnHUor-owrsxOO28NWlych4NDa-t3aGh8o30QTHRTeIdWzpZbND0c6-oXNmgNdrvzgcyh0OeA09LDtg450xJOjW6DXqKnXBcOejfsRqvJeDn66s9-Pqej4axvqGK-T0WujKQgScYTlgkJUgqlNiQzWOUxS4wQTG6wgITHWuYJTzaccqDMCB7nwLrR-3VvuO3UgPPpvmrq8KRLKadSxZzgOKjIVWXqyrka8vRY24OuLynBaVt42haetoWnt8KD5-3qsQBw18uE81hi9g_EoX39</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2528945104</pqid></control><display><type>article</type><title>Robust Exponential Stability Analysis for Stochastic Systems With Actuator Faults Using Improved Weighted Relaxed Integral Inequality</title><source>IEEE Electronic Library (IEL)</source><creator>Gnaneswaran, Nagamani ; Chinnasamy, Karthik ; Ramasamy, Subramaniam ; Zhu, Quanxin</creator><creatorcontrib>Gnaneswaran, Nagamani ; Chinnasamy, Karthik ; Ramasamy, Subramaniam ; Zhu, Quanxin</creatorcontrib><description>In this paper, the problem of the exponential stability criterion for stochastic delayed systems with actuator failures is investigated via weighted relaxed integral inequality. A suitable Lyapunov-Krasovskii functional (LKF) candidate is adapted to derive the sufficient conditions that guarantee the exponential stability of the considered stochastic system. The main concerned problem is to estimate stronger upper bounds than the conventional ones for the integral terms induced through the derivative LKF. For this estimation process, combining the weighted integral inequality together with the reciprocal convex lemma, a new type of relaxed-based integral inequality is introduced to bound the integral term based on the weighted integral inequality. By making the use of derived inequality, the desired exponential stability conditions are established by means of linear matrix inequalities (LMIs). Lastly, the applicability and superiority of the proposed theoretical results over the existing ones are examined in virtue of numerical examples.</description><identifier>ISSN: 2168-2216</identifier><identifier>EISSN: 2168-2232</identifier><identifier>DOI: 10.1109/TSMC.2019.2924327</identifier><identifier>CODEN: ITSMFE</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Actuator fault control ; Actuators ; Control theory ; delayed stochastic system ; Derivatives ; Failure analysis ; Inequality ; Integral equations ; Integrals ; Linear matrix inequalities ; linear matrix inequality (LMI) ; Lyapunov–Krasovskii functional (LKF) ; Mathematical analysis ; mean square exponential stability ; Robustness (mathematics) ; Stability analysis ; Stability criteria ; Stochastic processes ; Stochastic systems ; Upper bounds</subject><ispartof>IEEE transactions on systems, man, and cybernetics. Systems, 2021-06, Vol.51 (6), p.3346-3357</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-26f9c82e81b573b68e88699d1bc09f437c6638d06e754a8f757d525e23c654fe3</citedby><cites>FETCH-LOGICAL-c293t-26f9c82e81b573b68e88699d1bc09f437c6638d06e754a8f757d525e23c654fe3</cites><orcidid>0000-0002-3033-2992 ; 0000-0003-3130-4923 ; 0000-0002-6405-2235</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8755480$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8755480$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Gnaneswaran, Nagamani</creatorcontrib><creatorcontrib>Chinnasamy, Karthik</creatorcontrib><creatorcontrib>Ramasamy, Subramaniam</creatorcontrib><creatorcontrib>Zhu, Quanxin</creatorcontrib><title>Robust Exponential Stability Analysis for Stochastic Systems With Actuator Faults Using Improved Weighted Relaxed Integral Inequality</title><title>IEEE transactions on systems, man, and cybernetics. Systems</title><addtitle>TSMC</addtitle><description>In this paper, the problem of the exponential stability criterion for stochastic delayed systems with actuator failures is investigated via weighted relaxed integral inequality. A suitable Lyapunov-Krasovskii functional (LKF) candidate is adapted to derive the sufficient conditions that guarantee the exponential stability of the considered stochastic system. The main concerned problem is to estimate stronger upper bounds than the conventional ones for the integral terms induced through the derivative LKF. For this estimation process, combining the weighted integral inequality together with the reciprocal convex lemma, a new type of relaxed-based integral inequality is introduced to bound the integral term based on the weighted integral inequality. By making the use of derived inequality, the desired exponential stability conditions are established by means of linear matrix inequalities (LMIs). Lastly, the applicability and superiority of the proposed theoretical results over the existing ones are examined in virtue of numerical examples.</description><subject>Actuator fault control</subject><subject>Actuators</subject><subject>Control theory</subject><subject>delayed stochastic system</subject><subject>Derivatives</subject><subject>Failure analysis</subject><subject>Inequality</subject><subject>Integral equations</subject><subject>Integrals</subject><subject>Linear matrix inequalities</subject><subject>linear matrix inequality (LMI)</subject><subject>Lyapunov–Krasovskii functional (LKF)</subject><subject>Mathematical analysis</subject><subject>mean square exponential stability</subject><subject>Robustness (mathematics)</subject><subject>Stability analysis</subject><subject>Stability criteria</subject><subject>Stochastic processes</subject><subject>Stochastic systems</subject><subject>Upper bounds</subject><issn>2168-2216</issn><issn>2168-2232</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9UF1rwjAULWODifMHjL0E9qzLR5MmjyK6CY6BH_hY0nirkdpqkw79AfvfS1F8OofLOffce6LoleABIVh9LBffowHFRA2oojGjyUPUoUTIPqWMPt45Ec9Rz7k9xphQKRgWnehvXmWN82h8PlYllN7qAi28zmxh_QUNS11cnHUor-owrsxOO28NWlych4NDa-t3aGh8o30QTHRTeIdWzpZbND0c6-oXNmgNdrvzgcyh0OeA09LDtg450xJOjW6DXqKnXBcOejfsRqvJeDn66s9-Pqej4axvqGK-T0WujKQgScYTlgkJUgqlNiQzWOUxS4wQTG6wgITHWuYJTzaccqDMCB7nwLrR-3VvuO3UgPPpvmrq8KRLKadSxZzgOKjIVWXqyrka8vRY24OuLynBaVt42haetoWnt8KD5-3qsQBw18uE81hi9g_EoX39</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Gnaneswaran, Nagamani</creator><creator>Chinnasamy, Karthik</creator><creator>Ramasamy, Subramaniam</creator><creator>Zhu, Quanxin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-3033-2992</orcidid><orcidid>https://orcid.org/0000-0003-3130-4923</orcidid><orcidid>https://orcid.org/0000-0002-6405-2235</orcidid></search><sort><creationdate>20210601</creationdate><title>Robust Exponential Stability Analysis for Stochastic Systems With Actuator Faults Using Improved Weighted Relaxed Integral Inequality</title><author>Gnaneswaran, Nagamani ; Chinnasamy, Karthik ; Ramasamy, Subramaniam ; Zhu, Quanxin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-26f9c82e81b573b68e88699d1bc09f437c6638d06e754a8f757d525e23c654fe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Actuator fault control</topic><topic>Actuators</topic><topic>Control theory</topic><topic>delayed stochastic system</topic><topic>Derivatives</topic><topic>Failure analysis</topic><topic>Inequality</topic><topic>Integral equations</topic><topic>Integrals</topic><topic>Linear matrix inequalities</topic><topic>linear matrix inequality (LMI)</topic><topic>Lyapunov–Krasovskii functional (LKF)</topic><topic>Mathematical analysis</topic><topic>mean square exponential stability</topic><topic>Robustness (mathematics)</topic><topic>Stability analysis</topic><topic>Stability criteria</topic><topic>Stochastic processes</topic><topic>Stochastic systems</topic><topic>Upper bounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gnaneswaran, Nagamani</creatorcontrib><creatorcontrib>Chinnasamy, Karthik</creatorcontrib><creatorcontrib>Ramasamy, Subramaniam</creatorcontrib><creatorcontrib>Zhu, Quanxin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on systems, man, and cybernetics. Systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gnaneswaran, Nagamani</au><au>Chinnasamy, Karthik</au><au>Ramasamy, Subramaniam</au><au>Zhu, Quanxin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust Exponential Stability Analysis for Stochastic Systems With Actuator Faults Using Improved Weighted Relaxed Integral Inequality</atitle><jtitle>IEEE transactions on systems, man, and cybernetics. Systems</jtitle><stitle>TSMC</stitle><date>2021-06-01</date><risdate>2021</risdate><volume>51</volume><issue>6</issue><spage>3346</spage><epage>3357</epage><pages>3346-3357</pages><issn>2168-2216</issn><eissn>2168-2232</eissn><coden>ITSMFE</coden><abstract>In this paper, the problem of the exponential stability criterion for stochastic delayed systems with actuator failures is investigated via weighted relaxed integral inequality. A suitable Lyapunov-Krasovskii functional (LKF) candidate is adapted to derive the sufficient conditions that guarantee the exponential stability of the considered stochastic system. The main concerned problem is to estimate stronger upper bounds than the conventional ones for the integral terms induced through the derivative LKF. For this estimation process, combining the weighted integral inequality together with the reciprocal convex lemma, a new type of relaxed-based integral inequality is introduced to bound the integral term based on the weighted integral inequality. By making the use of derived inequality, the desired exponential stability conditions are established by means of linear matrix inequalities (LMIs). Lastly, the applicability and superiority of the proposed theoretical results over the existing ones are examined in virtue of numerical examples.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TSMC.2019.2924327</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-3033-2992</orcidid><orcidid>https://orcid.org/0000-0003-3130-4923</orcidid><orcidid>https://orcid.org/0000-0002-6405-2235</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2168-2216 |
ispartof | IEEE transactions on systems, man, and cybernetics. Systems, 2021-06, Vol.51 (6), p.3346-3357 |
issn | 2168-2216 2168-2232 |
language | eng |
recordid | cdi_proquest_journals_2528945104 |
source | IEEE Electronic Library (IEL) |
subjects | Actuator fault control Actuators Control theory delayed stochastic system Derivatives Failure analysis Inequality Integral equations Integrals Linear matrix inequalities linear matrix inequality (LMI) Lyapunov–Krasovskii functional (LKF) Mathematical analysis mean square exponential stability Robustness (mathematics) Stability analysis Stability criteria Stochastic processes Stochastic systems Upper bounds |
title | Robust Exponential Stability Analysis for Stochastic Systems With Actuator Faults Using Improved Weighted Relaxed Integral Inequality |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T04%3A59%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20Exponential%20Stability%20Analysis%20for%20Stochastic%20Systems%20With%20Actuator%20Faults%20Using%20Improved%20Weighted%20Relaxed%20Integral%20Inequality&rft.jtitle=IEEE%20transactions%20on%20systems,%20man,%20and%20cybernetics.%20Systems&rft.au=Gnaneswaran,%20Nagamani&rft.date=2021-06-01&rft.volume=51&rft.issue=6&rft.spage=3346&rft.epage=3357&rft.pages=3346-3357&rft.issn=2168-2216&rft.eissn=2168-2232&rft.coden=ITSMFE&rft_id=info:doi/10.1109/TSMC.2019.2924327&rft_dat=%3Cproquest_RIE%3E2528945104%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2528945104&rft_id=info:pmid/&rft_ieee_id=8755480&rfr_iscdi=true |