Robust Exponential Stability Analysis for Stochastic Systems With Actuator Faults Using Improved Weighted Relaxed Integral Inequality

In this paper, the problem of the exponential stability criterion for stochastic delayed systems with actuator failures is investigated via weighted relaxed integral inequality. A suitable Lyapunov-Krasovskii functional (LKF) candidate is adapted to derive the sufficient conditions that guarantee th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on systems, man, and cybernetics. Systems man, and cybernetics. Systems, 2021-06, Vol.51 (6), p.3346-3357
Hauptverfasser: Gnaneswaran, Nagamani, Chinnasamy, Karthik, Ramasamy, Subramaniam, Zhu, Quanxin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3357
container_issue 6
container_start_page 3346
container_title IEEE transactions on systems, man, and cybernetics. Systems
container_volume 51
creator Gnaneswaran, Nagamani
Chinnasamy, Karthik
Ramasamy, Subramaniam
Zhu, Quanxin
description In this paper, the problem of the exponential stability criterion for stochastic delayed systems with actuator failures is investigated via weighted relaxed integral inequality. A suitable Lyapunov-Krasovskii functional (LKF) candidate is adapted to derive the sufficient conditions that guarantee the exponential stability of the considered stochastic system. The main concerned problem is to estimate stronger upper bounds than the conventional ones for the integral terms induced through the derivative LKF. For this estimation process, combining the weighted integral inequality together with the reciprocal convex lemma, a new type of relaxed-based integral inequality is introduced to bound the integral term based on the weighted integral inequality. By making the use of derived inequality, the desired exponential stability conditions are established by means of linear matrix inequalities (LMIs). Lastly, the applicability and superiority of the proposed theoretical results over the existing ones are examined in virtue of numerical examples.
doi_str_mv 10.1109/TSMC.2019.2924327
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2528945104</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8755480</ieee_id><sourcerecordid>2528945104</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-26f9c82e81b573b68e88699d1bc09f437c6638d06e754a8f757d525e23c654fe3</originalsourceid><addsrcrecordid>eNo9UF1rwjAULWODifMHjL0E9qzLR5MmjyK6CY6BH_hY0nirkdpqkw79AfvfS1F8OofLOffce6LoleABIVh9LBffowHFRA2oojGjyUPUoUTIPqWMPt45Ec9Rz7k9xphQKRgWnehvXmWN82h8PlYllN7qAi28zmxh_QUNS11cnHUor-owrsxOO28NWlych4NDa-t3aGh8o30QTHRTeIdWzpZbND0c6-oXNmgNdrvzgcyh0OeA09LDtg450xJOjW6DXqKnXBcOejfsRqvJeDn66s9-Pqej4axvqGK-T0WujKQgScYTlgkJUgqlNiQzWOUxS4wQTG6wgITHWuYJTzaccqDMCB7nwLrR-3VvuO3UgPPpvmrq8KRLKadSxZzgOKjIVWXqyrka8vRY24OuLynBaVt42haetoWnt8KD5-3qsQBw18uE81hi9g_EoX39</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2528945104</pqid></control><display><type>article</type><title>Robust Exponential Stability Analysis for Stochastic Systems With Actuator Faults Using Improved Weighted Relaxed Integral Inequality</title><source>IEEE Electronic Library (IEL)</source><creator>Gnaneswaran, Nagamani ; Chinnasamy, Karthik ; Ramasamy, Subramaniam ; Zhu, Quanxin</creator><creatorcontrib>Gnaneswaran, Nagamani ; Chinnasamy, Karthik ; Ramasamy, Subramaniam ; Zhu, Quanxin</creatorcontrib><description>In this paper, the problem of the exponential stability criterion for stochastic delayed systems with actuator failures is investigated via weighted relaxed integral inequality. A suitable Lyapunov-Krasovskii functional (LKF) candidate is adapted to derive the sufficient conditions that guarantee the exponential stability of the considered stochastic system. The main concerned problem is to estimate stronger upper bounds than the conventional ones for the integral terms induced through the derivative LKF. For this estimation process, combining the weighted integral inequality together with the reciprocal convex lemma, a new type of relaxed-based integral inequality is introduced to bound the integral term based on the weighted integral inequality. By making the use of derived inequality, the desired exponential stability conditions are established by means of linear matrix inequalities (LMIs). Lastly, the applicability and superiority of the proposed theoretical results over the existing ones are examined in virtue of numerical examples.</description><identifier>ISSN: 2168-2216</identifier><identifier>EISSN: 2168-2232</identifier><identifier>DOI: 10.1109/TSMC.2019.2924327</identifier><identifier>CODEN: ITSMFE</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Actuator fault control ; Actuators ; Control theory ; delayed stochastic system ; Derivatives ; Failure analysis ; Inequality ; Integral equations ; Integrals ; Linear matrix inequalities ; linear matrix inequality (LMI) ; Lyapunov–Krasovskii functional (LKF) ; Mathematical analysis ; mean square exponential stability ; Robustness (mathematics) ; Stability analysis ; Stability criteria ; Stochastic processes ; Stochastic systems ; Upper bounds</subject><ispartof>IEEE transactions on systems, man, and cybernetics. Systems, 2021-06, Vol.51 (6), p.3346-3357</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-26f9c82e81b573b68e88699d1bc09f437c6638d06e754a8f757d525e23c654fe3</citedby><cites>FETCH-LOGICAL-c293t-26f9c82e81b573b68e88699d1bc09f437c6638d06e754a8f757d525e23c654fe3</cites><orcidid>0000-0002-3033-2992 ; 0000-0003-3130-4923 ; 0000-0002-6405-2235</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8755480$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8755480$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Gnaneswaran, Nagamani</creatorcontrib><creatorcontrib>Chinnasamy, Karthik</creatorcontrib><creatorcontrib>Ramasamy, Subramaniam</creatorcontrib><creatorcontrib>Zhu, Quanxin</creatorcontrib><title>Robust Exponential Stability Analysis for Stochastic Systems With Actuator Faults Using Improved Weighted Relaxed Integral Inequality</title><title>IEEE transactions on systems, man, and cybernetics. Systems</title><addtitle>TSMC</addtitle><description>In this paper, the problem of the exponential stability criterion for stochastic delayed systems with actuator failures is investigated via weighted relaxed integral inequality. A suitable Lyapunov-Krasovskii functional (LKF) candidate is adapted to derive the sufficient conditions that guarantee the exponential stability of the considered stochastic system. The main concerned problem is to estimate stronger upper bounds than the conventional ones for the integral terms induced through the derivative LKF. For this estimation process, combining the weighted integral inequality together with the reciprocal convex lemma, a new type of relaxed-based integral inequality is introduced to bound the integral term based on the weighted integral inequality. By making the use of derived inequality, the desired exponential stability conditions are established by means of linear matrix inequalities (LMIs). Lastly, the applicability and superiority of the proposed theoretical results over the existing ones are examined in virtue of numerical examples.</description><subject>Actuator fault control</subject><subject>Actuators</subject><subject>Control theory</subject><subject>delayed stochastic system</subject><subject>Derivatives</subject><subject>Failure analysis</subject><subject>Inequality</subject><subject>Integral equations</subject><subject>Integrals</subject><subject>Linear matrix inequalities</subject><subject>linear matrix inequality (LMI)</subject><subject>Lyapunov–Krasovskii functional (LKF)</subject><subject>Mathematical analysis</subject><subject>mean square exponential stability</subject><subject>Robustness (mathematics)</subject><subject>Stability analysis</subject><subject>Stability criteria</subject><subject>Stochastic processes</subject><subject>Stochastic systems</subject><subject>Upper bounds</subject><issn>2168-2216</issn><issn>2168-2232</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9UF1rwjAULWODifMHjL0E9qzLR5MmjyK6CY6BH_hY0nirkdpqkw79AfvfS1F8OofLOffce6LoleABIVh9LBffowHFRA2oojGjyUPUoUTIPqWMPt45Ec9Rz7k9xphQKRgWnehvXmWN82h8PlYllN7qAi28zmxh_QUNS11cnHUor-owrsxOO28NWlych4NDa-t3aGh8o30QTHRTeIdWzpZbND0c6-oXNmgNdrvzgcyh0OeA09LDtg450xJOjW6DXqKnXBcOejfsRqvJeDn66s9-Pqej4axvqGK-T0WujKQgScYTlgkJUgqlNiQzWOUxS4wQTG6wgITHWuYJTzaccqDMCB7nwLrR-3VvuO3UgPPpvmrq8KRLKadSxZzgOKjIVWXqyrka8vRY24OuLynBaVt42haetoWnt8KD5-3qsQBw18uE81hi9g_EoX39</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Gnaneswaran, Nagamani</creator><creator>Chinnasamy, Karthik</creator><creator>Ramasamy, Subramaniam</creator><creator>Zhu, Quanxin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-3033-2992</orcidid><orcidid>https://orcid.org/0000-0003-3130-4923</orcidid><orcidid>https://orcid.org/0000-0002-6405-2235</orcidid></search><sort><creationdate>20210601</creationdate><title>Robust Exponential Stability Analysis for Stochastic Systems With Actuator Faults Using Improved Weighted Relaxed Integral Inequality</title><author>Gnaneswaran, Nagamani ; Chinnasamy, Karthik ; Ramasamy, Subramaniam ; Zhu, Quanxin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-26f9c82e81b573b68e88699d1bc09f437c6638d06e754a8f757d525e23c654fe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Actuator fault control</topic><topic>Actuators</topic><topic>Control theory</topic><topic>delayed stochastic system</topic><topic>Derivatives</topic><topic>Failure analysis</topic><topic>Inequality</topic><topic>Integral equations</topic><topic>Integrals</topic><topic>Linear matrix inequalities</topic><topic>linear matrix inequality (LMI)</topic><topic>Lyapunov–Krasovskii functional (LKF)</topic><topic>Mathematical analysis</topic><topic>mean square exponential stability</topic><topic>Robustness (mathematics)</topic><topic>Stability analysis</topic><topic>Stability criteria</topic><topic>Stochastic processes</topic><topic>Stochastic systems</topic><topic>Upper bounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gnaneswaran, Nagamani</creatorcontrib><creatorcontrib>Chinnasamy, Karthik</creatorcontrib><creatorcontrib>Ramasamy, Subramaniam</creatorcontrib><creatorcontrib>Zhu, Quanxin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on systems, man, and cybernetics. Systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gnaneswaran, Nagamani</au><au>Chinnasamy, Karthik</au><au>Ramasamy, Subramaniam</au><au>Zhu, Quanxin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust Exponential Stability Analysis for Stochastic Systems With Actuator Faults Using Improved Weighted Relaxed Integral Inequality</atitle><jtitle>IEEE transactions on systems, man, and cybernetics. Systems</jtitle><stitle>TSMC</stitle><date>2021-06-01</date><risdate>2021</risdate><volume>51</volume><issue>6</issue><spage>3346</spage><epage>3357</epage><pages>3346-3357</pages><issn>2168-2216</issn><eissn>2168-2232</eissn><coden>ITSMFE</coden><abstract>In this paper, the problem of the exponential stability criterion for stochastic delayed systems with actuator failures is investigated via weighted relaxed integral inequality. A suitable Lyapunov-Krasovskii functional (LKF) candidate is adapted to derive the sufficient conditions that guarantee the exponential stability of the considered stochastic system. The main concerned problem is to estimate stronger upper bounds than the conventional ones for the integral terms induced through the derivative LKF. For this estimation process, combining the weighted integral inequality together with the reciprocal convex lemma, a new type of relaxed-based integral inequality is introduced to bound the integral term based on the weighted integral inequality. By making the use of derived inequality, the desired exponential stability conditions are established by means of linear matrix inequalities (LMIs). Lastly, the applicability and superiority of the proposed theoretical results over the existing ones are examined in virtue of numerical examples.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TSMC.2019.2924327</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-3033-2992</orcidid><orcidid>https://orcid.org/0000-0003-3130-4923</orcidid><orcidid>https://orcid.org/0000-0002-6405-2235</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2168-2216
ispartof IEEE transactions on systems, man, and cybernetics. Systems, 2021-06, Vol.51 (6), p.3346-3357
issn 2168-2216
2168-2232
language eng
recordid cdi_proquest_journals_2528945104
source IEEE Electronic Library (IEL)
subjects Actuator fault control
Actuators
Control theory
delayed stochastic system
Derivatives
Failure analysis
Inequality
Integral equations
Integrals
Linear matrix inequalities
linear matrix inequality (LMI)
Lyapunov–Krasovskii functional (LKF)
Mathematical analysis
mean square exponential stability
Robustness (mathematics)
Stability analysis
Stability criteria
Stochastic processes
Stochastic systems
Upper bounds
title Robust Exponential Stability Analysis for Stochastic Systems With Actuator Faults Using Improved Weighted Relaxed Integral Inequality
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T04%3A59%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20Exponential%20Stability%20Analysis%20for%20Stochastic%20Systems%20With%20Actuator%20Faults%20Using%20Improved%20Weighted%20Relaxed%20Integral%20Inequality&rft.jtitle=IEEE%20transactions%20on%20systems,%20man,%20and%20cybernetics.%20Systems&rft.au=Gnaneswaran,%20Nagamani&rft.date=2021-06-01&rft.volume=51&rft.issue=6&rft.spage=3346&rft.epage=3357&rft.pages=3346-3357&rft.issn=2168-2216&rft.eissn=2168-2232&rft.coden=ITSMFE&rft_id=info:doi/10.1109/TSMC.2019.2924327&rft_dat=%3Cproquest_RIE%3E2528945104%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2528945104&rft_id=info:pmid/&rft_ieee_id=8755480&rfr_iscdi=true