Solving Generalized Vehicle Routing Problem With Occasional Drivers via Evolutionary Multitasking

With the emergence of crowdshipping and sharing economy , vehicle routing problem with occasional drivers (VRPOD) has been recently proposed to involve occasional drivers with private vehicles for the delivery of goods. In this article, we present a generalized variant of VRPOD, namely, the vehicle...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on cybernetics 2021-06, Vol.51 (6), p.3171-3184
Hauptverfasser: Feng, Liang, Zhou, Lei, Gupta, Abhishek, Zhong, Jinghui, Zhu, Zexuan, Tan, Kay-Chen, Qin, Kai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3184
container_issue 6
container_start_page 3171
container_title IEEE transactions on cybernetics
container_volume 51
creator Feng, Liang
Zhou, Lei
Gupta, Abhishek
Zhong, Jinghui
Zhu, Zexuan
Tan, Kay-Chen
Qin, Kai
description With the emergence of crowdshipping and sharing economy , vehicle routing problem with occasional drivers (VRPOD) has been recently proposed to involve occasional drivers with private vehicles for the delivery of goods. In this article, we present a generalized variant of VRPOD, namely, the vehicle routing problem with heterogeneous capacity, time window, and occasional driver (VRPHTO), by taking the capacity heterogeneity and time window of vehicles into consideration. Furthermore, to meet the requirement in today's cloud computing service, wherein multiple optimization tasks may need to be solved at the same time, we propose a novel evolutionary multitasking algorithm (EMA) to optimize multiple VRPHTOs simultaneously with a single population. Finally, 56 new VRPHTO instances are generated based on the existing common vehicle routing benchmarks. Comprehensive empirical studies are conducted to illustrate the benefits of the new VRPHTOs and to verify the efficacy of the proposed EMA for multitasking against a state-of-art single task evolutionary solver. The obtained results showed that the employment of occasional drivers could significantly reduce the routing cost, and the proposed EMA is not only able to solve multiple VRPHTOs simultaneously but also can achieve enhanced optimization performance via the knowledge transfer between tasks along the evolutionary search process.
doi_str_mv 10.1109/TCYB.2019.2955599
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2528944245</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8938734</ieee_id><sourcerecordid>2528944245</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-e03d04e5cbdfc797f153be34503bbffa937a63a22e464d9fdb2ef505eead1183</originalsourceid><addsrcrecordid>eNpdkU1LAzEQhoMoKtofIIIEvHhpzeductT6CUpFi-Jpye7OajRtarJb0F9vSmsPzmWGmecdmHkROqBkQCnRp-Ph6_mAEaoHTEsptd5Au4xmqs9YLjfXdZbvoF6MHySFSi2tttEOpyqnhPBdZJ68m9vpG76GKQTj7A_U-BnebeUAP_quXcwegi8dTPCLbd_xqKpMtH5qHL4Idg4h4rk1-HLuXaJTP3zj-861tjXxM6n30VZjXITeKu-h8dXleHjTvxtd3w7P7voVF7rtA-E1ESCrsm6qXOcNlbwELiThZdk0RvPcZNwwBiITtW7qkkEjiQQwNaWK76GT5dpZ8F8dxLaY2FiBc2YKvosF45xwpjJFE3r8D_3wXUgHJUoypYVgQiaKLqkq-BgDNMUs2Em6rqCkWDhQLBwoFg4UKweS5mi1uSsnUK8Vf_9OwOESsACwHivNVc4F_wWfgIsh</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2528944245</pqid></control><display><type>article</type><title>Solving Generalized Vehicle Routing Problem With Occasional Drivers via Evolutionary Multitasking</title><source>IEEE Electronic Library (IEL)</source><creator>Feng, Liang ; Zhou, Lei ; Gupta, Abhishek ; Zhong, Jinghui ; Zhu, Zexuan ; Tan, Kay-Chen ; Qin, Kai</creator><creatorcontrib>Feng, Liang ; Zhou, Lei ; Gupta, Abhishek ; Zhong, Jinghui ; Zhu, Zexuan ; Tan, Kay-Chen ; Qin, Kai</creatorcontrib><description>With the emergence of crowdshipping and sharing economy , vehicle routing problem with occasional drivers (VRPOD) has been recently proposed to involve occasional drivers with private vehicles for the delivery of goods. In this article, we present a generalized variant of VRPOD, namely, the vehicle routing problem with heterogeneous capacity, time window, and occasional driver (VRPHTO), by taking the capacity heterogeneity and time window of vehicles into consideration. Furthermore, to meet the requirement in today's cloud computing service, wherein multiple optimization tasks may need to be solved at the same time, we propose a novel evolutionary multitasking algorithm (EMA) to optimize multiple VRPHTOs simultaneously with a single population. Finally, 56 new VRPHTO instances are generated based on the existing common vehicle routing benchmarks. Comprehensive empirical studies are conducted to illustrate the benefits of the new VRPHTOs and to verify the efficacy of the proposed EMA for multitasking against a state-of-art single task evolutionary solver. The obtained results showed that the employment of occasional drivers could significantly reduce the routing cost, and the proposed EMA is not only able to solve multiple VRPHTOs simultaneously but also can achieve enhanced optimization performance via the knowledge transfer between tasks along the evolutionary search process.</description><identifier>ISSN: 2168-2267</identifier><identifier>EISSN: 2168-2275</identifier><identifier>DOI: 10.1109/TCYB.2019.2955599</identifier><identifier>PMID: 31871003</identifier><identifier>CODEN: ITCEB8</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Cloud computing ; Evolutionary algorithms ; Evolutionary multitasking ; Heterogeneity ; Knowledge management ; Microsoft Windows ; Multitasking ; occasional driver ; Optimization ; Route planning ; Routing ; Search process ; Task analysis ; time window ; Vehicle routing ; vehicle routing problem (VRP) ; Vehicles ; Windows (intervals)</subject><ispartof>IEEE transactions on cybernetics, 2021-06, Vol.51 (6), p.3171-3184</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-e03d04e5cbdfc797f153be34503bbffa937a63a22e464d9fdb2ef505eead1183</citedby><cites>FETCH-LOGICAL-c349t-e03d04e5cbdfc797f153be34503bbffa937a63a22e464d9fdb2ef505eead1183</cites><orcidid>0000-0002-5294-9299 ; 0000-0002-6080-855X ; 0000-0002-8356-7242 ; 0000-0002-6802-2463 ; 0000-0001-6631-1651 ; 0000-0003-0113-3430 ; 0000-0001-8479-6904</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8938734$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8938734$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31871003$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Feng, Liang</creatorcontrib><creatorcontrib>Zhou, Lei</creatorcontrib><creatorcontrib>Gupta, Abhishek</creatorcontrib><creatorcontrib>Zhong, Jinghui</creatorcontrib><creatorcontrib>Zhu, Zexuan</creatorcontrib><creatorcontrib>Tan, Kay-Chen</creatorcontrib><creatorcontrib>Qin, Kai</creatorcontrib><title>Solving Generalized Vehicle Routing Problem With Occasional Drivers via Evolutionary Multitasking</title><title>IEEE transactions on cybernetics</title><addtitle>TCYB</addtitle><addtitle>IEEE Trans Cybern</addtitle><description>With the emergence of crowdshipping and sharing economy , vehicle routing problem with occasional drivers (VRPOD) has been recently proposed to involve occasional drivers with private vehicles for the delivery of goods. In this article, we present a generalized variant of VRPOD, namely, the vehicle routing problem with heterogeneous capacity, time window, and occasional driver (VRPHTO), by taking the capacity heterogeneity and time window of vehicles into consideration. Furthermore, to meet the requirement in today's cloud computing service, wherein multiple optimization tasks may need to be solved at the same time, we propose a novel evolutionary multitasking algorithm (EMA) to optimize multiple VRPHTOs simultaneously with a single population. Finally, 56 new VRPHTO instances are generated based on the existing common vehicle routing benchmarks. Comprehensive empirical studies are conducted to illustrate the benefits of the new VRPHTOs and to verify the efficacy of the proposed EMA for multitasking against a state-of-art single task evolutionary solver. The obtained results showed that the employment of occasional drivers could significantly reduce the routing cost, and the proposed EMA is not only able to solve multiple VRPHTOs simultaneously but also can achieve enhanced optimization performance via the knowledge transfer between tasks along the evolutionary search process.</description><subject>Cloud computing</subject><subject>Evolutionary algorithms</subject><subject>Evolutionary multitasking</subject><subject>Heterogeneity</subject><subject>Knowledge management</subject><subject>Microsoft Windows</subject><subject>Multitasking</subject><subject>occasional driver</subject><subject>Optimization</subject><subject>Route planning</subject><subject>Routing</subject><subject>Search process</subject><subject>Task analysis</subject><subject>time window</subject><subject>Vehicle routing</subject><subject>vehicle routing problem (VRP)</subject><subject>Vehicles</subject><subject>Windows (intervals)</subject><issn>2168-2267</issn><issn>2168-2275</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkU1LAzEQhoMoKtofIIIEvHhpzeductT6CUpFi-Jpye7OajRtarJb0F9vSmsPzmWGmecdmHkROqBkQCnRp-Ph6_mAEaoHTEsptd5Au4xmqs9YLjfXdZbvoF6MHySFSi2tttEOpyqnhPBdZJ68m9vpG76GKQTj7A_U-BnebeUAP_quXcwegi8dTPCLbd_xqKpMtH5qHL4Idg4h4rk1-HLuXaJTP3zj-861tjXxM6n30VZjXITeKu-h8dXleHjTvxtd3w7P7voVF7rtA-E1ESCrsm6qXOcNlbwELiThZdk0RvPcZNwwBiITtW7qkkEjiQQwNaWK76GT5dpZ8F8dxLaY2FiBc2YKvosF45xwpjJFE3r8D_3wXUgHJUoypYVgQiaKLqkq-BgDNMUs2Em6rqCkWDhQLBwoFg4UKweS5mi1uSsnUK8Vf_9OwOESsACwHivNVc4F_wWfgIsh</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Feng, Liang</creator><creator>Zhou, Lei</creator><creator>Gupta, Abhishek</creator><creator>Zhong, Jinghui</creator><creator>Zhu, Zexuan</creator><creator>Tan, Kay-Chen</creator><creator>Qin, Kai</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5294-9299</orcidid><orcidid>https://orcid.org/0000-0002-6080-855X</orcidid><orcidid>https://orcid.org/0000-0002-8356-7242</orcidid><orcidid>https://orcid.org/0000-0002-6802-2463</orcidid><orcidid>https://orcid.org/0000-0001-6631-1651</orcidid><orcidid>https://orcid.org/0000-0003-0113-3430</orcidid><orcidid>https://orcid.org/0000-0001-8479-6904</orcidid></search><sort><creationdate>20210601</creationdate><title>Solving Generalized Vehicle Routing Problem With Occasional Drivers via Evolutionary Multitasking</title><author>Feng, Liang ; Zhou, Lei ; Gupta, Abhishek ; Zhong, Jinghui ; Zhu, Zexuan ; Tan, Kay-Chen ; Qin, Kai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-e03d04e5cbdfc797f153be34503bbffa937a63a22e464d9fdb2ef505eead1183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Cloud computing</topic><topic>Evolutionary algorithms</topic><topic>Evolutionary multitasking</topic><topic>Heterogeneity</topic><topic>Knowledge management</topic><topic>Microsoft Windows</topic><topic>Multitasking</topic><topic>occasional driver</topic><topic>Optimization</topic><topic>Route planning</topic><topic>Routing</topic><topic>Search process</topic><topic>Task analysis</topic><topic>time window</topic><topic>Vehicle routing</topic><topic>vehicle routing problem (VRP)</topic><topic>Vehicles</topic><topic>Windows (intervals)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Feng, Liang</creatorcontrib><creatorcontrib>Zhou, Lei</creatorcontrib><creatorcontrib>Gupta, Abhishek</creatorcontrib><creatorcontrib>Zhong, Jinghui</creatorcontrib><creatorcontrib>Zhu, Zexuan</creatorcontrib><creatorcontrib>Tan, Kay-Chen</creatorcontrib><creatorcontrib>Qin, Kai</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on cybernetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Feng, Liang</au><au>Zhou, Lei</au><au>Gupta, Abhishek</au><au>Zhong, Jinghui</au><au>Zhu, Zexuan</au><au>Tan, Kay-Chen</au><au>Qin, Kai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solving Generalized Vehicle Routing Problem With Occasional Drivers via Evolutionary Multitasking</atitle><jtitle>IEEE transactions on cybernetics</jtitle><stitle>TCYB</stitle><addtitle>IEEE Trans Cybern</addtitle><date>2021-06-01</date><risdate>2021</risdate><volume>51</volume><issue>6</issue><spage>3171</spage><epage>3184</epage><pages>3171-3184</pages><issn>2168-2267</issn><eissn>2168-2275</eissn><coden>ITCEB8</coden><abstract>With the emergence of crowdshipping and sharing economy , vehicle routing problem with occasional drivers (VRPOD) has been recently proposed to involve occasional drivers with private vehicles for the delivery of goods. In this article, we present a generalized variant of VRPOD, namely, the vehicle routing problem with heterogeneous capacity, time window, and occasional driver (VRPHTO), by taking the capacity heterogeneity and time window of vehicles into consideration. Furthermore, to meet the requirement in today's cloud computing service, wherein multiple optimization tasks may need to be solved at the same time, we propose a novel evolutionary multitasking algorithm (EMA) to optimize multiple VRPHTOs simultaneously with a single population. Finally, 56 new VRPHTO instances are generated based on the existing common vehicle routing benchmarks. Comprehensive empirical studies are conducted to illustrate the benefits of the new VRPHTOs and to verify the efficacy of the proposed EMA for multitasking against a state-of-art single task evolutionary solver. The obtained results showed that the employment of occasional drivers could significantly reduce the routing cost, and the proposed EMA is not only able to solve multiple VRPHTOs simultaneously but also can achieve enhanced optimization performance via the knowledge transfer between tasks along the evolutionary search process.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>31871003</pmid><doi>10.1109/TCYB.2019.2955599</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-5294-9299</orcidid><orcidid>https://orcid.org/0000-0002-6080-855X</orcidid><orcidid>https://orcid.org/0000-0002-8356-7242</orcidid><orcidid>https://orcid.org/0000-0002-6802-2463</orcidid><orcidid>https://orcid.org/0000-0001-6631-1651</orcidid><orcidid>https://orcid.org/0000-0003-0113-3430</orcidid><orcidid>https://orcid.org/0000-0001-8479-6904</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2168-2267
ispartof IEEE transactions on cybernetics, 2021-06, Vol.51 (6), p.3171-3184
issn 2168-2267
2168-2275
language eng
recordid cdi_proquest_journals_2528944245
source IEEE Electronic Library (IEL)
subjects Cloud computing
Evolutionary algorithms
Evolutionary multitasking
Heterogeneity
Knowledge management
Microsoft Windows
Multitasking
occasional driver
Optimization
Route planning
Routing
Search process
Task analysis
time window
Vehicle routing
vehicle routing problem (VRP)
Vehicles
Windows (intervals)
title Solving Generalized Vehicle Routing Problem With Occasional Drivers via Evolutionary Multitasking
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T11%3A04%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solving%20Generalized%20Vehicle%20Routing%20Problem%20With%20Occasional%20Drivers%20via%20Evolutionary%20Multitasking&rft.jtitle=IEEE%20transactions%20on%20cybernetics&rft.au=Feng,%20Liang&rft.date=2021-06-01&rft.volume=51&rft.issue=6&rft.spage=3171&rft.epage=3184&rft.pages=3171-3184&rft.issn=2168-2267&rft.eissn=2168-2275&rft.coden=ITCEB8&rft_id=info:doi/10.1109/TCYB.2019.2955599&rft_dat=%3Cproquest_RIE%3E2528944245%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2528944245&rft_id=info:pmid/31871003&rft_ieee_id=8938734&rfr_iscdi=true