Magnetic field noise analyses generated by the interactions between a nitrogen vacancy center diamond and surface and bulk impurities

We investigated the mechanism of magnetic noise due to both surface and bulk impurities. For surface noise, we apply the Langevin method to spin fluctuation theory to calculate the noise for paramagnetic surface impurities absorbed in a thin layer of water. We find that the mechanisms generating noi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physica. B, Condensed matter Condensed matter, 2021-03, Vol.605, p.412767, Article 412767
Hauptverfasser: Chrostoski, Philip, Barrios, Bruce, Santamore, D.H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 412767
container_title Physica. B, Condensed matter
container_volume 605
creator Chrostoski, Philip
Barrios, Bruce
Santamore, D.H.
description We investigated the mechanism of magnetic noise due to both surface and bulk impurities. For surface noise, we apply the Langevin method to spin fluctuation theory to calculate the noise for paramagnetic surface impurities absorbed in a thin layer of water. We find that the mechanisms generating noise are spin flip and spin precession which depend on impurity spin relaxation and spin precession time. For the bulk noise, we consider carbon-13 and nitrogen as impurities and employ the correlated-cluster expansion to calculate noise. Carbon-13 noise is a few orders of magnitude larger than nitrogen due to the higher impurity density in the typical NV center diamond system. We also find that the noise in the secular approximation underestimates noise under low applied magnetic field. Overall, the major source of magnetic field noise is spin precession noise, which is more than five orders of magnitude larger than the spin flip noise. •Magnetic field noise in nitrogen vacancy center diamonds.•Surface and bulk impurity noise in nitrogen vacancy center diamonds.•Magnetic field noise is generated from spin flip and spin precession that compete.•Spin precession noise is the dominate noise mechanism in NV center diamonds.
doi_str_mv 10.1016/j.physb.2020.412767
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2528882364</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0921452620307419</els_id><sourcerecordid>2528882364</sourcerecordid><originalsourceid>FETCH-LOGICAL-c376t-5af18ab33165f8b2af0752ff9769618359a70762af55753eb0f069da3ff28f653</originalsourceid><addsrcrecordid>eNp9kL1OAzEQhC0EEiHwBDSWqC_4J7bvCgqE-JNANFBbPt-aOCS-YPtA9wC8N05CzTa7Gs2sNB9C55TMKKHycjnbLMbUzhhhZDanTEl1gCa0VrxilItDNCENo9VcMHmMTlJakjJU0Qn6eTbvAbK32HlYdTj0PgE2wazGBAm_Q4BoMnS4HXFeAPYhF8Fm34eEW8jfAAEbHHyOfTHjL2NNsCO2sDXizpt1H7rysMNpiM5Y2N3tsPrAfr0Zos8e0ik6cmaV4OxvT9Hb3e3rzUP19HL_eHP9VFmuZK6EcbQ2LedUCle3zDiiBHOuUbKRtOaiMYooWXQhlODQEkdk0xnuHKudFHyKLvZ_N7H_HCBlveyHWMomzQSr65pxOS8uvnfZ2KcUwelN9GsTR02J3vLWS73jrbe89Z53SV3tU1AKfHmIOlkPwULnI9isu97_m_8F-jmMHg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2528882364</pqid></control><display><type>article</type><title>Magnetic field noise analyses generated by the interactions between a nitrogen vacancy center diamond and surface and bulk impurities</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Chrostoski, Philip ; Barrios, Bruce ; Santamore, D.H.</creator><creatorcontrib>Chrostoski, Philip ; Barrios, Bruce ; Santamore, D.H.</creatorcontrib><description>We investigated the mechanism of magnetic noise due to both surface and bulk impurities. For surface noise, we apply the Langevin method to spin fluctuation theory to calculate the noise for paramagnetic surface impurities absorbed in a thin layer of water. We find that the mechanisms generating noise are spin flip and spin precession which depend on impurity spin relaxation and spin precession time. For the bulk noise, we consider carbon-13 and nitrogen as impurities and employ the correlated-cluster expansion to calculate noise. Carbon-13 noise is a few orders of magnitude larger than nitrogen due to the higher impurity density in the typical NV center diamond system. We also find that the noise in the secular approximation underestimates noise under low applied magnetic field. Overall, the major source of magnetic field noise is spin precession noise, which is more than five orders of magnitude larger than the spin flip noise. •Magnetic field noise in nitrogen vacancy center diamonds.•Surface and bulk impurity noise in nitrogen vacancy center diamonds.•Magnetic field noise is generated from spin flip and spin precession that compete.•Spin precession noise is the dominate noise mechanism in NV center diamonds.</description><identifier>ISSN: 0921-4526</identifier><identifier>EISSN: 1873-2135</identifier><identifier>DOI: 10.1016/j.physb.2020.412767</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Carbon 13 ; Diamonds ; Fluctuation theory ; Impurities ; Magnetic fields ; Magnetic noise ; Magnetism ; Mathematical analysis ; Nitrogen ; Noise generation ; NV center diamond ; Precession ; Signal to noise ratio ; Thin films</subject><ispartof>Physica. B, Condensed matter, 2021-03, Vol.605, p.412767, Article 412767</ispartof><rights>2021 Elsevier B.V.</rights><rights>Copyright Elsevier BV Mar 15, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c376t-5af18ab33165f8b2af0752ff9769618359a70762af55753eb0f069da3ff28f653</citedby><cites>FETCH-LOGICAL-c376t-5af18ab33165f8b2af0752ff9769618359a70762af55753eb0f069da3ff28f653</cites><orcidid>0000-0002-7665-3820</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.physb.2020.412767$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Chrostoski, Philip</creatorcontrib><creatorcontrib>Barrios, Bruce</creatorcontrib><creatorcontrib>Santamore, D.H.</creatorcontrib><title>Magnetic field noise analyses generated by the interactions between a nitrogen vacancy center diamond and surface and bulk impurities</title><title>Physica. B, Condensed matter</title><description>We investigated the mechanism of magnetic noise due to both surface and bulk impurities. For surface noise, we apply the Langevin method to spin fluctuation theory to calculate the noise for paramagnetic surface impurities absorbed in a thin layer of water. We find that the mechanisms generating noise are spin flip and spin precession which depend on impurity spin relaxation and spin precession time. For the bulk noise, we consider carbon-13 and nitrogen as impurities and employ the correlated-cluster expansion to calculate noise. Carbon-13 noise is a few orders of magnitude larger than nitrogen due to the higher impurity density in the typical NV center diamond system. We also find that the noise in the secular approximation underestimates noise under low applied magnetic field. Overall, the major source of magnetic field noise is spin precession noise, which is more than five orders of magnitude larger than the spin flip noise. •Magnetic field noise in nitrogen vacancy center diamonds.•Surface and bulk impurity noise in nitrogen vacancy center diamonds.•Magnetic field noise is generated from spin flip and spin precession that compete.•Spin precession noise is the dominate noise mechanism in NV center diamonds.</description><subject>Carbon 13</subject><subject>Diamonds</subject><subject>Fluctuation theory</subject><subject>Impurities</subject><subject>Magnetic fields</subject><subject>Magnetic noise</subject><subject>Magnetism</subject><subject>Mathematical analysis</subject><subject>Nitrogen</subject><subject>Noise generation</subject><subject>NV center diamond</subject><subject>Precession</subject><subject>Signal to noise ratio</subject><subject>Thin films</subject><issn>0921-4526</issn><issn>1873-2135</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kL1OAzEQhC0EEiHwBDSWqC_4J7bvCgqE-JNANFBbPt-aOCS-YPtA9wC8N05CzTa7Gs2sNB9C55TMKKHycjnbLMbUzhhhZDanTEl1gCa0VrxilItDNCENo9VcMHmMTlJakjJU0Qn6eTbvAbK32HlYdTj0PgE2wazGBAm_Q4BoMnS4HXFeAPYhF8Fm34eEW8jfAAEbHHyOfTHjL2NNsCO2sDXizpt1H7rysMNpiM5Y2N3tsPrAfr0Zos8e0ik6cmaV4OxvT9Hb3e3rzUP19HL_eHP9VFmuZK6EcbQ2LedUCle3zDiiBHOuUbKRtOaiMYooWXQhlODQEkdk0xnuHKudFHyKLvZ_N7H_HCBlveyHWMomzQSr65pxOS8uvnfZ2KcUwelN9GsTR02J3vLWS73jrbe89Z53SV3tU1AKfHmIOlkPwULnI9isu97_m_8F-jmMHg</recordid><startdate>20210315</startdate><enddate>20210315</enddate><creator>Chrostoski, Philip</creator><creator>Barrios, Bruce</creator><creator>Santamore, D.H.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-7665-3820</orcidid></search><sort><creationdate>20210315</creationdate><title>Magnetic field noise analyses generated by the interactions between a nitrogen vacancy center diamond and surface and bulk impurities</title><author>Chrostoski, Philip ; Barrios, Bruce ; Santamore, D.H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c376t-5af18ab33165f8b2af0752ff9769618359a70762af55753eb0f069da3ff28f653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Carbon 13</topic><topic>Diamonds</topic><topic>Fluctuation theory</topic><topic>Impurities</topic><topic>Magnetic fields</topic><topic>Magnetic noise</topic><topic>Magnetism</topic><topic>Mathematical analysis</topic><topic>Nitrogen</topic><topic>Noise generation</topic><topic>NV center diamond</topic><topic>Precession</topic><topic>Signal to noise ratio</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chrostoski, Philip</creatorcontrib><creatorcontrib>Barrios, Bruce</creatorcontrib><creatorcontrib>Santamore, D.H.</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physica. B, Condensed matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chrostoski, Philip</au><au>Barrios, Bruce</au><au>Santamore, D.H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Magnetic field noise analyses generated by the interactions between a nitrogen vacancy center diamond and surface and bulk impurities</atitle><jtitle>Physica. B, Condensed matter</jtitle><date>2021-03-15</date><risdate>2021</risdate><volume>605</volume><spage>412767</spage><pages>412767-</pages><artnum>412767</artnum><issn>0921-4526</issn><eissn>1873-2135</eissn><abstract>We investigated the mechanism of magnetic noise due to both surface and bulk impurities. For surface noise, we apply the Langevin method to spin fluctuation theory to calculate the noise for paramagnetic surface impurities absorbed in a thin layer of water. We find that the mechanisms generating noise are spin flip and spin precession which depend on impurity spin relaxation and spin precession time. For the bulk noise, we consider carbon-13 and nitrogen as impurities and employ the correlated-cluster expansion to calculate noise. Carbon-13 noise is a few orders of magnitude larger than nitrogen due to the higher impurity density in the typical NV center diamond system. We also find that the noise in the secular approximation underestimates noise under low applied magnetic field. Overall, the major source of magnetic field noise is spin precession noise, which is more than five orders of magnitude larger than the spin flip noise. •Magnetic field noise in nitrogen vacancy center diamonds.•Surface and bulk impurity noise in nitrogen vacancy center diamonds.•Magnetic field noise is generated from spin flip and spin precession that compete.•Spin precession noise is the dominate noise mechanism in NV center diamonds.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.physb.2020.412767</doi><orcidid>https://orcid.org/0000-0002-7665-3820</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0921-4526
ispartof Physica. B, Condensed matter, 2021-03, Vol.605, p.412767, Article 412767
issn 0921-4526
1873-2135
language eng
recordid cdi_proquest_journals_2528882364
source Elsevier ScienceDirect Journals Complete
subjects Carbon 13
Diamonds
Fluctuation theory
Impurities
Magnetic fields
Magnetic noise
Magnetism
Mathematical analysis
Nitrogen
Noise generation
NV center diamond
Precession
Signal to noise ratio
Thin films
title Magnetic field noise analyses generated by the interactions between a nitrogen vacancy center diamond and surface and bulk impurities
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T11%3A07%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Magnetic%20field%20noise%20analyses%20generated%20by%20the%20interactions%20between%20a%20nitrogen%20vacancy%20center%20diamond%20and%20surface%20and%20bulk%20impurities&rft.jtitle=Physica.%20B,%20Condensed%20matter&rft.au=Chrostoski,%20Philip&rft.date=2021-03-15&rft.volume=605&rft.spage=412767&rft.pages=412767-&rft.artnum=412767&rft.issn=0921-4526&rft.eissn=1873-2135&rft_id=info:doi/10.1016/j.physb.2020.412767&rft_dat=%3Cproquest_cross%3E2528882364%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2528882364&rft_id=info:pmid/&rft_els_id=S0921452620307419&rfr_iscdi=true