Application of Deep Self-Attention in Knowledge Tracing

The development of intelligent tutoring system has greatly influenced the way students learn and practice, which increases their learning efficiency. The intelligent tutoring system must model learners' mastery of the knowledge before providing feedback and advices to learners, so one class of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2021-05
Hauptverfasser: Zeng, Junhao, Zhang, Qingchun, Xie, Ning, Yang, Bochun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Zeng, Junhao
Zhang, Qingchun
Xie, Ning
Yang, Bochun
description The development of intelligent tutoring system has greatly influenced the way students learn and practice, which increases their learning efficiency. The intelligent tutoring system must model learners' mastery of the knowledge before providing feedback and advices to learners, so one class of algorithm called "knowledge tracing" is surely important. This paper proposed Deep Self-Attentive Knowledge Tracing (DSAKT) based on the data of PTA, an online assessment system used by students in many universities in China, to help these students learn more efficiently. Experimentation on the data of PTA shows that DSAKT outperforms the other models for knowledge tracing an improvement of AUC by 2.1% on average, and this model also has a good performance on the ASSIST dataset.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2528647280</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2528647280</sourcerecordid><originalsourceid>FETCH-proquest_journals_25286472803</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQwdywoyMlMTizJzM9TyE9TcElNLVAITs1J03UsKUnNAwtn5il45-WX56SmpKcqhBQlJmfmpfMwsKYl5hSn8kJpbgZlN9cQZw_dgqL8wtLU4pL4rPzSojygVLyRqZGFmYm5kYWBMXGqANJjNUc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2528647280</pqid></control><display><type>article</type><title>Application of Deep Self-Attention in Knowledge Tracing</title><source>Free E- Journals</source><creator>Zeng, Junhao ; Zhang, Qingchun ; Xie, Ning ; Yang, Bochun</creator><creatorcontrib>Zeng, Junhao ; Zhang, Qingchun ; Xie, Ning ; Yang, Bochun</creatorcontrib><description>The development of intelligent tutoring system has greatly influenced the way students learn and practice, which increases their learning efficiency. The intelligent tutoring system must model learners' mastery of the knowledge before providing feedback and advices to learners, so one class of algorithm called "knowledge tracing" is surely important. This paper proposed Deep Self-Attentive Knowledge Tracing (DSAKT) based on the data of PTA, an online assessment system used by students in many universities in China, to help these students learn more efficiently. Experimentation on the data of PTA shows that DSAKT outperforms the other models for knowledge tracing an improvement of AUC by 2.1% on average, and this model also has a good performance on the ASSIST dataset.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Colleges &amp; universities ; Experimentation ; Students ; Tracing ; Tutoring</subject><ispartof>arXiv.org, 2021-05</ispartof><rights>2021. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Zeng, Junhao</creatorcontrib><creatorcontrib>Zhang, Qingchun</creatorcontrib><creatorcontrib>Xie, Ning</creatorcontrib><creatorcontrib>Yang, Bochun</creatorcontrib><title>Application of Deep Self-Attention in Knowledge Tracing</title><title>arXiv.org</title><description>The development of intelligent tutoring system has greatly influenced the way students learn and practice, which increases their learning efficiency. The intelligent tutoring system must model learners' mastery of the knowledge before providing feedback and advices to learners, so one class of algorithm called "knowledge tracing" is surely important. This paper proposed Deep Self-Attentive Knowledge Tracing (DSAKT) based on the data of PTA, an online assessment system used by students in many universities in China, to help these students learn more efficiently. Experimentation on the data of PTA shows that DSAKT outperforms the other models for knowledge tracing an improvement of AUC by 2.1% on average, and this model also has a good performance on the ASSIST dataset.</description><subject>Algorithms</subject><subject>Colleges &amp; universities</subject><subject>Experimentation</subject><subject>Students</subject><subject>Tracing</subject><subject>Tutoring</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQwdywoyMlMTizJzM9TyE9TcElNLVAITs1J03UsKUnNAwtn5il45-WX56SmpKcqhBQlJmfmpfMwsKYl5hSn8kJpbgZlN9cQZw_dgqL8wtLU4pL4rPzSojygVLyRqZGFmYm5kYWBMXGqANJjNUc</recordid><startdate>20210523</startdate><enddate>20210523</enddate><creator>Zeng, Junhao</creator><creator>Zhang, Qingchun</creator><creator>Xie, Ning</creator><creator>Yang, Bochun</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20210523</creationdate><title>Application of Deep Self-Attention in Knowledge Tracing</title><author>Zeng, Junhao ; Zhang, Qingchun ; Xie, Ning ; Yang, Bochun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_25286472803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Colleges &amp; universities</topic><topic>Experimentation</topic><topic>Students</topic><topic>Tracing</topic><topic>Tutoring</topic><toplevel>online_resources</toplevel><creatorcontrib>Zeng, Junhao</creatorcontrib><creatorcontrib>Zhang, Qingchun</creatorcontrib><creatorcontrib>Xie, Ning</creatorcontrib><creatorcontrib>Yang, Bochun</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zeng, Junhao</au><au>Zhang, Qingchun</au><au>Xie, Ning</au><au>Yang, Bochun</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Application of Deep Self-Attention in Knowledge Tracing</atitle><jtitle>arXiv.org</jtitle><date>2021-05-23</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>The development of intelligent tutoring system has greatly influenced the way students learn and practice, which increases their learning efficiency. The intelligent tutoring system must model learners' mastery of the knowledge before providing feedback and advices to learners, so one class of algorithm called "knowledge tracing" is surely important. This paper proposed Deep Self-Attentive Knowledge Tracing (DSAKT) based on the data of PTA, an online assessment system used by students in many universities in China, to help these students learn more efficiently. Experimentation on the data of PTA shows that DSAKT outperforms the other models for knowledge tracing an improvement of AUC by 2.1% on average, and this model also has a good performance on the ASSIST dataset.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2021-05
issn 2331-8422
language eng
recordid cdi_proquest_journals_2528647280
source Free E- Journals
subjects Algorithms
Colleges & universities
Experimentation
Students
Tracing
Tutoring
title Application of Deep Self-Attention in Knowledge Tracing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T00%3A20%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Application%20of%20Deep%20Self-Attention%20in%20Knowledge%20Tracing&rft.jtitle=arXiv.org&rft.au=Zeng,%20Junhao&rft.date=2021-05-23&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2528647280%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2528647280&rft_id=info:pmid/&rfr_iscdi=true