Quantum dot-based high-fidelity universal quantum gates in noisy environment

Quantum dot-based spin qubit realization is one of the most promising quantum computing systems owing to its integrability with classical computation hardware and its versatility in realizing qubits and quantum gates. In this work, we investigate a quantum dot-based universal set of quantum gates (s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-11
Hauptverfasser: Tiwari, Yash, Dev, Aditya, Vishvendra Singh Poonia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Tiwari, Yash
Dev, Aditya
Vishvendra Singh Poonia
description Quantum dot-based spin qubit realization is one of the most promising quantum computing systems owing to its integrability with classical computation hardware and its versatility in realizing qubits and quantum gates. In this work, we investigate a quantum dot-based universal set of quantum gates (single qubit gates and the Toffoli gate) in the presence of hyperfine fluctuation noise and phononic charge noise. We model the spin dynamics and noise processes in the NOT gate, Hadamard gate and the Toffoli gate using the Lindblad master equation formalism to estimate the operating ranges of the external static and ac magnetic fields to achieve high fidelity operation of these gates in a noisy environment. In addition, the generality of the framework proposed in this paper enables modeling of larger quantum processors based on spin qubits in realistic conditions.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2528647093</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2528647093</sourcerecordid><originalsourceid>FETCH-proquest_journals_25286470933</originalsourceid><addsrcrecordid>eNqNyr0KwjAUQOEgCBbtOwScAzXpn7MoDi6Ce4n0tk1pb2xuUujb69AHcDrD-TYskkqdRJlKuWMxUZ8kicwLmWUqYo9n0OjDyGvrxVsT1LwzbScaU8Ng_MIDmhkc6YFPq2y1B-IGOVpDCwecjbM4AvoD2zZ6IIjX7tnxdn1d7uLj7BSAfNXb4PC3KpnJMk-L5KzUf-oLt1s-aA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2528647093</pqid></control><display><type>article</type><title>Quantum dot-based high-fidelity universal quantum gates in noisy environment</title><source>Free E- Journals</source><creator>Tiwari, Yash ; Dev, Aditya ; Vishvendra Singh Poonia</creator><creatorcontrib>Tiwari, Yash ; Dev, Aditya ; Vishvendra Singh Poonia</creatorcontrib><description>Quantum dot-based spin qubit realization is one of the most promising quantum computing systems owing to its integrability with classical computation hardware and its versatility in realizing qubits and quantum gates. In this work, we investigate a quantum dot-based universal set of quantum gates (single qubit gates and the Toffoli gate) in the presence of hyperfine fluctuation noise and phononic charge noise. We model the spin dynamics and noise processes in the NOT gate, Hadamard gate and the Toffoli gate using the Lindblad master equation formalism to estimate the operating ranges of the external static and ac magnetic fields to achieve high fidelity operation of these gates in a noisy environment. In addition, the generality of the framework proposed in this paper enables modeling of larger quantum processors based on spin qubits in realistic conditions.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Electron spin ; Electrons ; Gates ; Logic circuits ; Quantum computing ; Quantum dots</subject><ispartof>arXiv.org, 2024-11</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Tiwari, Yash</creatorcontrib><creatorcontrib>Dev, Aditya</creatorcontrib><creatorcontrib>Vishvendra Singh Poonia</creatorcontrib><title>Quantum dot-based high-fidelity universal quantum gates in noisy environment</title><title>arXiv.org</title><description>Quantum dot-based spin qubit realization is one of the most promising quantum computing systems owing to its integrability with classical computation hardware and its versatility in realizing qubits and quantum gates. In this work, we investigate a quantum dot-based universal set of quantum gates (single qubit gates and the Toffoli gate) in the presence of hyperfine fluctuation noise and phononic charge noise. We model the spin dynamics and noise processes in the NOT gate, Hadamard gate and the Toffoli gate using the Lindblad master equation formalism to estimate the operating ranges of the external static and ac magnetic fields to achieve high fidelity operation of these gates in a noisy environment. In addition, the generality of the framework proposed in this paper enables modeling of larger quantum processors based on spin qubits in realistic conditions.</description><subject>Electron spin</subject><subject>Electrons</subject><subject>Gates</subject><subject>Logic circuits</subject><subject>Quantum computing</subject><subject>Quantum dots</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNyr0KwjAUQOEgCBbtOwScAzXpn7MoDi6Ce4n0tk1pb2xuUujb69AHcDrD-TYskkqdRJlKuWMxUZ8kicwLmWUqYo9n0OjDyGvrxVsT1LwzbScaU8Ng_MIDmhkc6YFPq2y1B-IGOVpDCwecjbM4AvoD2zZ6IIjX7tnxdn1d7uLj7BSAfNXb4PC3KpnJMk-L5KzUf-oLt1s-aA</recordid><startdate>20241113</startdate><enddate>20241113</enddate><creator>Tiwari, Yash</creator><creator>Dev, Aditya</creator><creator>Vishvendra Singh Poonia</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241113</creationdate><title>Quantum dot-based high-fidelity universal quantum gates in noisy environment</title><author>Tiwari, Yash ; Dev, Aditya ; Vishvendra Singh Poonia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_25286470933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Electron spin</topic><topic>Electrons</topic><topic>Gates</topic><topic>Logic circuits</topic><topic>Quantum computing</topic><topic>Quantum dots</topic><toplevel>online_resources</toplevel><creatorcontrib>Tiwari, Yash</creatorcontrib><creatorcontrib>Dev, Aditya</creatorcontrib><creatorcontrib>Vishvendra Singh Poonia</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tiwari, Yash</au><au>Dev, Aditya</au><au>Vishvendra Singh Poonia</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Quantum dot-based high-fidelity universal quantum gates in noisy environment</atitle><jtitle>arXiv.org</jtitle><date>2024-11-13</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Quantum dot-based spin qubit realization is one of the most promising quantum computing systems owing to its integrability with classical computation hardware and its versatility in realizing qubits and quantum gates. In this work, we investigate a quantum dot-based universal set of quantum gates (single qubit gates and the Toffoli gate) in the presence of hyperfine fluctuation noise and phononic charge noise. We model the spin dynamics and noise processes in the NOT gate, Hadamard gate and the Toffoli gate using the Lindblad master equation formalism to estimate the operating ranges of the external static and ac magnetic fields to achieve high fidelity operation of these gates in a noisy environment. In addition, the generality of the framework proposed in this paper enables modeling of larger quantum processors based on spin qubits in realistic conditions.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-11
issn 2331-8422
language eng
recordid cdi_proquest_journals_2528647093
source Free E- Journals
subjects Electron spin
Electrons
Gates
Logic circuits
Quantum computing
Quantum dots
title Quantum dot-based high-fidelity universal quantum gates in noisy environment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T22%3A40%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Quantum%20dot-based%20high-fidelity%20universal%20quantum%20gates%20in%20noisy%20environment&rft.jtitle=arXiv.org&rft.au=Tiwari,%20Yash&rft.date=2024-11-13&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2528647093%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2528647093&rft_id=info:pmid/&rfr_iscdi=true