Joint 2D-DOD and 2D-DOA Estimation for Coprime EMVS–MIMO Radar

The issue of two-dimensional (2D) direction-of-departure and direction-of-arrival estimation for bistatic multiple-input multiple-output (MIMO) radar with a coprime electromagnetic vector sensor (EMVS) is addressed in this paper, and a tensor-based subspace algorithm is proposed. Firstly, the covari...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Circuits, systems, and signal processing systems, and signal processing, 2021-06, Vol.40 (6), p.2950-2966
Hauptverfasser: Wang, Xianpeng, Huang, Mengxing, Wan, Liangtian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2966
container_issue 6
container_start_page 2950
container_title Circuits, systems, and signal processing
container_volume 40
creator Wang, Xianpeng
Huang, Mengxing
Wan, Liangtian
description The issue of two-dimensional (2D) direction-of-departure and direction-of-arrival estimation for bistatic multiple-input multiple-output (MIMO) radar with a coprime electromagnetic vector sensor (EMVS) is addressed in this paper, and a tensor-based subspace algorithm is proposed. Firstly, the covariance measurement of the received data is arranged into a fourth-order tensor, which can maintain the multi-dimensional characteristic of the received data. Then, the higher-order singular value decomposition is followed to get an accurate signal subspace. By utilizing the uniformity of the subarrays in coprime EMVS–MIMO radar, the rotation invariant technique is adopted to achieve ambiguous elevation angle estimation. Thereafter, the unambiguous elevation angles are recovered by exploring the coprime characteristic of the subarrays. Finally, all azimuth angles are achieved by using the vector cross-product strategy. The tensor nature inherited from the array measurement is fully explored, and the coprime geometry enables EMVS–MIMO radar to achieve larger array aperture than the existing uniform linear configuration; thus, the proposed method offers better estimation performance than current state-of-the-art algorithms. Several computer simulations validate the effectiveness of the proposed algorithm.
doi_str_mv 10.1007/s00034-020-01605-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2528640846</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2528640846</sourcerecordid><originalsourceid>FETCH-LOGICAL-c429t-78be1b59774c76abe1f157b18d3759116c36268434910681de027a3e87a55d673</originalsourceid><addsrcrecordid>eNp9kM1Kw0AUhQdRsFZfwFXA9ei985-dpa1aaQn4h7thmkwkxSZ1Jl248x18Q5_E1AjuXN174ZxzDx8hpwjnCKAvIgBwQYEBBVQgqdwjA5QcqTTa7JMBMG0oGHw-JEcxrgAwFSkbkMvbpqrbhE3oJJskri76dZRMY1utXVs1dVI2IRk3m1CtfTJdPN1_fXwuZossuXOFC8fkoHSv0Z_8ziF5vJo-jG_oPLuejUdzmguWtlSbpcelTLUWuVauO0qUeomm4FqmiCrniikjuEgRlMHCd40d90Y7KQul-ZCc9bmb0LxtfWztqtmGuntpmWRGCTBCdSrWq_LQxBh8aXe1XXi3CHZHyvakbEfK_pCysjPx3hQ7cf3iw1_0P65vR35nRg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2528640846</pqid></control><display><type>article</type><title>Joint 2D-DOD and 2D-DOA Estimation for Coprime EMVS–MIMO Radar</title><source>SpringerNature Journals</source><creator>Wang, Xianpeng ; Huang, Mengxing ; Wan, Liangtian</creator><creatorcontrib>Wang, Xianpeng ; Huang, Mengxing ; Wan, Liangtian</creatorcontrib><description>The issue of two-dimensional (2D) direction-of-departure and direction-of-arrival estimation for bistatic multiple-input multiple-output (MIMO) radar with a coprime electromagnetic vector sensor (EMVS) is addressed in this paper, and a tensor-based subspace algorithm is proposed. Firstly, the covariance measurement of the received data is arranged into a fourth-order tensor, which can maintain the multi-dimensional characteristic of the received data. Then, the higher-order singular value decomposition is followed to get an accurate signal subspace. By utilizing the uniformity of the subarrays in coprime EMVS–MIMO radar, the rotation invariant technique is adopted to achieve ambiguous elevation angle estimation. Thereafter, the unambiguous elevation angles are recovered by exploring the coprime characteristic of the subarrays. Finally, all azimuth angles are achieved by using the vector cross-product strategy. The tensor nature inherited from the array measurement is fully explored, and the coprime geometry enables EMVS–MIMO radar to achieve larger array aperture than the existing uniform linear configuration; thus, the proposed method offers better estimation performance than current state-of-the-art algorithms. Several computer simulations validate the effectiveness of the proposed algorithm.</description><identifier>ISSN: 0278-081X</identifier><identifier>EISSN: 1531-5878</identifier><identifier>DOI: 10.1007/s00034-020-01605-5</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Circuits and Systems ; Direction of arrival ; Electrical Engineering ; Electronics and Microelectronics ; Elevation angle ; Engineering ; Instrumentation ; Mathematical analysis ; Radar arrays ; Signal,Image and Speech Processing ; Singular value decomposition ; Tensors</subject><ispartof>Circuits, systems, and signal processing, 2021-06, Vol.40 (6), p.2950-2966</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c429t-78be1b59774c76abe1f157b18d3759116c36268434910681de027a3e87a55d673</citedby><cites>FETCH-LOGICAL-c429t-78be1b59774c76abe1f157b18d3759116c36268434910681de027a3e87a55d673</cites><orcidid>0000-0002-6681-6489</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00034-020-01605-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00034-020-01605-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Wang, Xianpeng</creatorcontrib><creatorcontrib>Huang, Mengxing</creatorcontrib><creatorcontrib>Wan, Liangtian</creatorcontrib><title>Joint 2D-DOD and 2D-DOA Estimation for Coprime EMVS–MIMO Radar</title><title>Circuits, systems, and signal processing</title><addtitle>Circuits Syst Signal Process</addtitle><description>The issue of two-dimensional (2D) direction-of-departure and direction-of-arrival estimation for bistatic multiple-input multiple-output (MIMO) radar with a coprime electromagnetic vector sensor (EMVS) is addressed in this paper, and a tensor-based subspace algorithm is proposed. Firstly, the covariance measurement of the received data is arranged into a fourth-order tensor, which can maintain the multi-dimensional characteristic of the received data. Then, the higher-order singular value decomposition is followed to get an accurate signal subspace. By utilizing the uniformity of the subarrays in coprime EMVS–MIMO radar, the rotation invariant technique is adopted to achieve ambiguous elevation angle estimation. Thereafter, the unambiguous elevation angles are recovered by exploring the coprime characteristic of the subarrays. Finally, all azimuth angles are achieved by using the vector cross-product strategy. The tensor nature inherited from the array measurement is fully explored, and the coprime geometry enables EMVS–MIMO radar to achieve larger array aperture than the existing uniform linear configuration; thus, the proposed method offers better estimation performance than current state-of-the-art algorithms. Several computer simulations validate the effectiveness of the proposed algorithm.</description><subject>Algorithms</subject><subject>Circuits and Systems</subject><subject>Direction of arrival</subject><subject>Electrical Engineering</subject><subject>Electronics and Microelectronics</subject><subject>Elevation angle</subject><subject>Engineering</subject><subject>Instrumentation</subject><subject>Mathematical analysis</subject><subject>Radar arrays</subject><subject>Signal,Image and Speech Processing</subject><subject>Singular value decomposition</subject><subject>Tensors</subject><issn>0278-081X</issn><issn>1531-5878</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kM1Kw0AUhQdRsFZfwFXA9ei985-dpa1aaQn4h7thmkwkxSZ1Jl248x18Q5_E1AjuXN174ZxzDx8hpwjnCKAvIgBwQYEBBVQgqdwjA5QcqTTa7JMBMG0oGHw-JEcxrgAwFSkbkMvbpqrbhE3oJJskri76dZRMY1utXVs1dVI2IRk3m1CtfTJdPN1_fXwuZossuXOFC8fkoHSv0Z_8ziF5vJo-jG_oPLuejUdzmguWtlSbpcelTLUWuVauO0qUeomm4FqmiCrniikjuEgRlMHCd40d90Y7KQul-ZCc9bmb0LxtfWztqtmGuntpmWRGCTBCdSrWq_LQxBh8aXe1XXi3CHZHyvakbEfK_pCysjPx3hQ7cf3iw1_0P65vR35nRg</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Wang, Xianpeng</creator><creator>Huang, Mengxing</creator><creator>Wan, Liangtian</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7SP</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0002-6681-6489</orcidid></search><sort><creationdate>20210601</creationdate><title>Joint 2D-DOD and 2D-DOA Estimation for Coprime EMVS–MIMO Radar</title><author>Wang, Xianpeng ; Huang, Mengxing ; Wan, Liangtian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c429t-78be1b59774c76abe1f157b18d3759116c36268434910681de027a3e87a55d673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Circuits and Systems</topic><topic>Direction of arrival</topic><topic>Electrical Engineering</topic><topic>Electronics and Microelectronics</topic><topic>Elevation angle</topic><topic>Engineering</topic><topic>Instrumentation</topic><topic>Mathematical analysis</topic><topic>Radar arrays</topic><topic>Signal,Image and Speech Processing</topic><topic>Singular value decomposition</topic><topic>Tensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Xianpeng</creatorcontrib><creatorcontrib>Huang, Mengxing</creatorcontrib><creatorcontrib>Wan, Liangtian</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Science Database (ProQuest)</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Circuits, systems, and signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Xianpeng</au><au>Huang, Mengxing</au><au>Wan, Liangtian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Joint 2D-DOD and 2D-DOA Estimation for Coprime EMVS–MIMO Radar</atitle><jtitle>Circuits, systems, and signal processing</jtitle><stitle>Circuits Syst Signal Process</stitle><date>2021-06-01</date><risdate>2021</risdate><volume>40</volume><issue>6</issue><spage>2950</spage><epage>2966</epage><pages>2950-2966</pages><issn>0278-081X</issn><eissn>1531-5878</eissn><abstract>The issue of two-dimensional (2D) direction-of-departure and direction-of-arrival estimation for bistatic multiple-input multiple-output (MIMO) radar with a coprime electromagnetic vector sensor (EMVS) is addressed in this paper, and a tensor-based subspace algorithm is proposed. Firstly, the covariance measurement of the received data is arranged into a fourth-order tensor, which can maintain the multi-dimensional characteristic of the received data. Then, the higher-order singular value decomposition is followed to get an accurate signal subspace. By utilizing the uniformity of the subarrays in coprime EMVS–MIMO radar, the rotation invariant technique is adopted to achieve ambiguous elevation angle estimation. Thereafter, the unambiguous elevation angles are recovered by exploring the coprime characteristic of the subarrays. Finally, all azimuth angles are achieved by using the vector cross-product strategy. The tensor nature inherited from the array measurement is fully explored, and the coprime geometry enables EMVS–MIMO radar to achieve larger array aperture than the existing uniform linear configuration; thus, the proposed method offers better estimation performance than current state-of-the-art algorithms. Several computer simulations validate the effectiveness of the proposed algorithm.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s00034-020-01605-5</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-6681-6489</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0278-081X
ispartof Circuits, systems, and signal processing, 2021-06, Vol.40 (6), p.2950-2966
issn 0278-081X
1531-5878
language eng
recordid cdi_proquest_journals_2528640846
source SpringerNature Journals
subjects Algorithms
Circuits and Systems
Direction of arrival
Electrical Engineering
Electronics and Microelectronics
Elevation angle
Engineering
Instrumentation
Mathematical analysis
Radar arrays
Signal,Image and Speech Processing
Singular value decomposition
Tensors
title Joint 2D-DOD and 2D-DOA Estimation for Coprime EMVS–MIMO Radar
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T08%3A32%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Joint%202D-DOD%20and%202D-DOA%20Estimation%20for%20Coprime%20EMVS%E2%80%93MIMO%20Radar&rft.jtitle=Circuits,%20systems,%20and%20signal%20processing&rft.au=Wang,%20Xianpeng&rft.date=2021-06-01&rft.volume=40&rft.issue=6&rft.spage=2950&rft.epage=2966&rft.pages=2950-2966&rft.issn=0278-081X&rft.eissn=1531-5878&rft_id=info:doi/10.1007/s00034-020-01605-5&rft_dat=%3Cproquest_cross%3E2528640846%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2528640846&rft_id=info:pmid/&rfr_iscdi=true