A Study on Plume Dispersion Characteristics of Two Discrete Plume Stacks for Negative Temperature Gradient Conditions
The dispersion of air pollutants emitted from industries has been studied ever since the dawn of industrialisation. The present work focuses on investigating the effect of negative atmospheric temperature gradient and the plume stack orientation of two individual equal-height stacks on the vertical...
Gespeichert in:
Veröffentlicht in: | Environmental modeling & assessment 2021-06, Vol.26 (3), p.405-422 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 422 |
---|---|
container_issue | 3 |
container_start_page | 405 |
container_title | Environmental modeling & assessment |
container_volume | 26 |
creator | Sivanandan, Hrishikesh Kishore, V. Ratna Goel, Mukesh Asthana, Abhishek |
description | The dispersion of air pollutants emitted from industries has been studied ever since the dawn of industrialisation. The present work focuses on investigating the effect of negative atmospheric temperature gradient and the plume stack orientation of two individual equal-height stacks on the vertical rise and dispersion of the plume. The study carried out upon three-stack layout configurations namely inline, 45° and non-inline, separated by an inter-stack distance of 12 times the exit chimney diameter (12
D
) and 22 times the exit chimney diameter (22
D
) in each case over the two temperature gradients of −0.2 K/100 m and −0.5 K/100 m. The turbulence is modelled using realisable k-ε model, a model used in the FLUENT flow solver. In the case of the inline configuration, the upwind plume shields its downwind counterpart, which in turn allows for higher plume rise at a given temperature gradient. The plume oscillates more in the case of inline than 45° and non-inline cases. Also, for a temperature gradient of −0.5 K/100 m, the plumes oscillate violently in the vertical direction, mainly because, with the initial rise of the plume, cold air from higher altitudes moves down and forms a layer of lower temperature closer to the ground. The present study is important to highlight the plume dispersion characteristics under negative temperature gradient conditions. |
doi_str_mv | 10.1007/s10666-020-09747-1 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2528638727</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A713975875</galeid><sourcerecordid>A713975875</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-f8cc17872f024784248ce1e40c9ecd630e3de90ecc1fd8eb6194897866497f933</originalsourceid><addsrcrecordid>eNp9kV1vFCEUhidGE2v1D3hF4vXUA8PwcblZtZo01aTrNUHmsFJ3hxUYm_57T50m3jVcQOB5XiBv173lcMEB9PvKQSnVg4AerJa658-6Mz7qoRdW6ee0lnQkQKiX3atabwGIh_GsWzbspi3TPcsz-3ZYjsg-pHrCUhNtbH_64kPDkmpLobIc2e4uPxChYMNH4ab58KuymAu7xr1v6Q-yHR4pxLelILssfko4N7bN85QaBdfX3YvoDxXfPM7n3fdPH3fbz_3V18sv281VHySI1kcTAtdGiwhCaiOFNAE5SggWw6QGwGFCC0hUnAz-UNxKY7VRSlod7TCcd-_W3FPJvxeszd3mpcx0pROjMGqgbE3UxUrt_QFdmmNu9G0aEx5TyDPGRPsbzQerR6NHEsQqhJJrLRjdqaSjL_eOg3vow619OOrD_evDcZKGVaoEz3ss_9_yhPUXUgqOGA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2528638727</pqid></control><display><type>article</type><title>A Study on Plume Dispersion Characteristics of Two Discrete Plume Stacks for Negative Temperature Gradient Conditions</title><source>SpringerLink Journals - AutoHoldings</source><creator>Sivanandan, Hrishikesh ; Kishore, V. Ratna ; Goel, Mukesh ; Asthana, Abhishek</creator><creatorcontrib>Sivanandan, Hrishikesh ; Kishore, V. Ratna ; Goel, Mukesh ; Asthana, Abhishek</creatorcontrib><description>The dispersion of air pollutants emitted from industries has been studied ever since the dawn of industrialisation. The present work focuses on investigating the effect of negative atmospheric temperature gradient and the plume stack orientation of two individual equal-height stacks on the vertical rise and dispersion of the plume. The study carried out upon three-stack layout configurations namely inline, 45° and non-inline, separated by an inter-stack distance of 12 times the exit chimney diameter (12
D
) and 22 times the exit chimney diameter (22
D
) in each case over the two temperature gradients of −0.2 K/100 m and −0.5 K/100 m. The turbulence is modelled using realisable k-ε model, a model used in the FLUENT flow solver. In the case of the inline configuration, the upwind plume shields its downwind counterpart, which in turn allows for higher plume rise at a given temperature gradient. The plume oscillates more in the case of inline than 45° and non-inline cases. Also, for a temperature gradient of −0.5 K/100 m, the plumes oscillate violently in the vertical direction, mainly because, with the initial rise of the plume, cold air from higher altitudes moves down and forms a layer of lower temperature closer to the ground. The present study is important to highlight the plume dispersion characteristics under negative temperature gradient conditions.</description><identifier>ISSN: 1420-2026</identifier><identifier>EISSN: 1573-2967</identifier><identifier>DOI: 10.1007/s10666-020-09747-1</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Aerodynamics ; Air pollution ; Air temperature ; Applications of Mathematics ; Atmospheric boundary layer ; Atmospheric temperature ; Computational fluid dynamics ; Configurations ; Dimensional analysis ; Dispersion ; Earth and Environmental Science ; Environment ; Low temperature ; Math. Appl. in Environmental Science ; Mathematical Modeling and Industrial Mathematics ; Nitrogen dioxide ; Numerical analysis ; Operations Research/Decision Theory ; Plumes ; Pollutants ; Reynolds number ; Stacks ; Temperature gradients ; Velocity</subject><ispartof>Environmental modeling & assessment, 2021-06, Vol.26 (3), p.405-422</ispartof><rights>The Author(s) 2021</rights><rights>COPYRIGHT 2021 Springer</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-f8cc17872f024784248ce1e40c9ecd630e3de90ecc1fd8eb6194897866497f933</citedby><cites>FETCH-LOGICAL-c402t-f8cc17872f024784248ce1e40c9ecd630e3de90ecc1fd8eb6194897866497f933</cites><orcidid>0000-0003-2991-3439</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10666-020-09747-1$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10666-020-09747-1$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Sivanandan, Hrishikesh</creatorcontrib><creatorcontrib>Kishore, V. Ratna</creatorcontrib><creatorcontrib>Goel, Mukesh</creatorcontrib><creatorcontrib>Asthana, Abhishek</creatorcontrib><title>A Study on Plume Dispersion Characteristics of Two Discrete Plume Stacks for Negative Temperature Gradient Conditions</title><title>Environmental modeling & assessment</title><addtitle>Environ Model Assess</addtitle><description>The dispersion of air pollutants emitted from industries has been studied ever since the dawn of industrialisation. The present work focuses on investigating the effect of negative atmospheric temperature gradient and the plume stack orientation of two individual equal-height stacks on the vertical rise and dispersion of the plume. The study carried out upon three-stack layout configurations namely inline, 45° and non-inline, separated by an inter-stack distance of 12 times the exit chimney diameter (12
D
) and 22 times the exit chimney diameter (22
D
) in each case over the two temperature gradients of −0.2 K/100 m and −0.5 K/100 m. The turbulence is modelled using realisable k-ε model, a model used in the FLUENT flow solver. In the case of the inline configuration, the upwind plume shields its downwind counterpart, which in turn allows for higher plume rise at a given temperature gradient. The plume oscillates more in the case of inline than 45° and non-inline cases. Also, for a temperature gradient of −0.5 K/100 m, the plumes oscillate violently in the vertical direction, mainly because, with the initial rise of the plume, cold air from higher altitudes moves down and forms a layer of lower temperature closer to the ground. The present study is important to highlight the plume dispersion characteristics under negative temperature gradient conditions.</description><subject>Aerodynamics</subject><subject>Air pollution</subject><subject>Air temperature</subject><subject>Applications of Mathematics</subject><subject>Atmospheric boundary layer</subject><subject>Atmospheric temperature</subject><subject>Computational fluid dynamics</subject><subject>Configurations</subject><subject>Dimensional analysis</subject><subject>Dispersion</subject><subject>Earth and Environmental Science</subject><subject>Environment</subject><subject>Low temperature</subject><subject>Math. Appl. in Environmental Science</subject><subject>Mathematical Modeling and Industrial Mathematics</subject><subject>Nitrogen dioxide</subject><subject>Numerical analysis</subject><subject>Operations Research/Decision Theory</subject><subject>Plumes</subject><subject>Pollutants</subject><subject>Reynolds number</subject><subject>Stacks</subject><subject>Temperature gradients</subject><subject>Velocity</subject><issn>1420-2026</issn><issn>1573-2967</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kV1vFCEUhidGE2v1D3hF4vXUA8PwcblZtZo01aTrNUHmsFJ3hxUYm_57T50m3jVcQOB5XiBv173lcMEB9PvKQSnVg4AerJa658-6Mz7qoRdW6ee0lnQkQKiX3atabwGIh_GsWzbspi3TPcsz-3ZYjsg-pHrCUhNtbH_64kPDkmpLobIc2e4uPxChYMNH4ab58KuymAu7xr1v6Q-yHR4pxLelILssfko4N7bN85QaBdfX3YvoDxXfPM7n3fdPH3fbz_3V18sv281VHySI1kcTAtdGiwhCaiOFNAE5SggWw6QGwGFCC0hUnAz-UNxKY7VRSlod7TCcd-_W3FPJvxeszd3mpcx0pROjMGqgbE3UxUrt_QFdmmNu9G0aEx5TyDPGRPsbzQerR6NHEsQqhJJrLRjdqaSjL_eOg3vow619OOrD_evDcZKGVaoEz3ss_9_yhPUXUgqOGA</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Sivanandan, Hrishikesh</creator><creator>Kishore, V. Ratna</creator><creator>Goel, Mukesh</creator><creator>Asthana, Abhishek</creator><general>Springer International Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7ST</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0003-2991-3439</orcidid></search><sort><creationdate>20210601</creationdate><title>A Study on Plume Dispersion Characteristics of Two Discrete Plume Stacks for Negative Temperature Gradient Conditions</title><author>Sivanandan, Hrishikesh ; Kishore, V. Ratna ; Goel, Mukesh ; Asthana, Abhishek</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-f8cc17872f024784248ce1e40c9ecd630e3de90ecc1fd8eb6194897866497f933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aerodynamics</topic><topic>Air pollution</topic><topic>Air temperature</topic><topic>Applications of Mathematics</topic><topic>Atmospheric boundary layer</topic><topic>Atmospheric temperature</topic><topic>Computational fluid dynamics</topic><topic>Configurations</topic><topic>Dimensional analysis</topic><topic>Dispersion</topic><topic>Earth and Environmental Science</topic><topic>Environment</topic><topic>Low temperature</topic><topic>Math. Appl. in Environmental Science</topic><topic>Mathematical Modeling and Industrial Mathematics</topic><topic>Nitrogen dioxide</topic><topic>Numerical analysis</topic><topic>Operations Research/Decision Theory</topic><topic>Plumes</topic><topic>Pollutants</topic><topic>Reynolds number</topic><topic>Stacks</topic><topic>Temperature gradients</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sivanandan, Hrishikesh</creatorcontrib><creatorcontrib>Kishore, V. Ratna</creatorcontrib><creatorcontrib>Goel, Mukesh</creatorcontrib><creatorcontrib>Asthana, Abhishek</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Environment Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><jtitle>Environmental modeling & assessment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sivanandan, Hrishikesh</au><au>Kishore, V. Ratna</au><au>Goel, Mukesh</au><au>Asthana, Abhishek</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Study on Plume Dispersion Characteristics of Two Discrete Plume Stacks for Negative Temperature Gradient Conditions</atitle><jtitle>Environmental modeling & assessment</jtitle><stitle>Environ Model Assess</stitle><date>2021-06-01</date><risdate>2021</risdate><volume>26</volume><issue>3</issue><spage>405</spage><epage>422</epage><pages>405-422</pages><issn>1420-2026</issn><eissn>1573-2967</eissn><abstract>The dispersion of air pollutants emitted from industries has been studied ever since the dawn of industrialisation. The present work focuses on investigating the effect of negative atmospheric temperature gradient and the plume stack orientation of two individual equal-height stacks on the vertical rise and dispersion of the plume. The study carried out upon three-stack layout configurations namely inline, 45° and non-inline, separated by an inter-stack distance of 12 times the exit chimney diameter (12
D
) and 22 times the exit chimney diameter (22
D
) in each case over the two temperature gradients of −0.2 K/100 m and −0.5 K/100 m. The turbulence is modelled using realisable k-ε model, a model used in the FLUENT flow solver. In the case of the inline configuration, the upwind plume shields its downwind counterpart, which in turn allows for higher plume rise at a given temperature gradient. The plume oscillates more in the case of inline than 45° and non-inline cases. Also, for a temperature gradient of −0.5 K/100 m, the plumes oscillate violently in the vertical direction, mainly because, with the initial rise of the plume, cold air from higher altitudes moves down and forms a layer of lower temperature closer to the ground. The present study is important to highlight the plume dispersion characteristics under negative temperature gradient conditions.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s10666-020-09747-1</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0003-2991-3439</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1420-2026 |
ispartof | Environmental modeling & assessment, 2021-06, Vol.26 (3), p.405-422 |
issn | 1420-2026 1573-2967 |
language | eng |
recordid | cdi_proquest_journals_2528638727 |
source | SpringerLink Journals - AutoHoldings |
subjects | Aerodynamics Air pollution Air temperature Applications of Mathematics Atmospheric boundary layer Atmospheric temperature Computational fluid dynamics Configurations Dimensional analysis Dispersion Earth and Environmental Science Environment Low temperature Math. Appl. in Environmental Science Mathematical Modeling and Industrial Mathematics Nitrogen dioxide Numerical analysis Operations Research/Decision Theory Plumes Pollutants Reynolds number Stacks Temperature gradients Velocity |
title | A Study on Plume Dispersion Characteristics of Two Discrete Plume Stacks for Negative Temperature Gradient Conditions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T06%3A09%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Study%20on%20Plume%20Dispersion%20Characteristics%20of%20Two%20Discrete%20Plume%20Stacks%20for%20Negative%20Temperature%20Gradient%20Conditions&rft.jtitle=Environmental%20modeling%20&%20assessment&rft.au=Sivanandan,%20Hrishikesh&rft.date=2021-06-01&rft.volume=26&rft.issue=3&rft.spage=405&rft.epage=422&rft.pages=405-422&rft.issn=1420-2026&rft.eissn=1573-2967&rft_id=info:doi/10.1007/s10666-020-09747-1&rft_dat=%3Cgale_proqu%3EA713975875%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2528638727&rft_id=info:pmid/&rft_galeid=A713975875&rfr_iscdi=true |