Necessary conditions for weak minima and for strict minima of order two in nonsmooth constrained multiobjective optimization

In this paper, we give necessary conditions for the existence of a strict local minimum of order two for multiobjective optimization problems with equality and inequality constraints. We suppose that the objective function and the active inequality constraints are only locally Lipschitz. We consider...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of global optimization 2021-05, Vol.80 (1), p.177-193
1. Verfasser: Constantin, Elena
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 193
container_issue 1
container_start_page 177
container_title Journal of global optimization
container_volume 80
creator Constantin, Elena
description In this paper, we give necessary conditions for the existence of a strict local minimum of order two for multiobjective optimization problems with equality and inequality constraints. We suppose that the objective function and the active inequality constraints are only locally Lipschitz. We consider both regular equality constraints and degenerate equality constraints. This article could be considered as a continuation of [E. Constantin, Necessary Conditions for Weak Efficiency for Nonsmooth Degenerate Multiobjective Optimization Problems, J. Global Optim, 75, 111-129, 2019]. We introduce a constraint qualification and a regularity condition, and we show that under each of them, the dual necessary conditions for a weak local minimum of the aforementioned article become of Kuhn-Tucker type.
doi_str_mv 10.1007/s10898-021-01016-z
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2528637491</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A718396542</galeid><sourcerecordid>A718396542</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-5a5dde30c39f6a9c88de3155705c781c77eb2b98a71a48dbebc3e022746afdd93</originalsourceid><addsrcrecordid>eNp9kc2OFCEUhYnRxHb0BVyRuK7xAk0By8lEHZOJbnRNKLg10nZBC7ST6fjw0lMad4YF4eR894dDyGsGlwxAva0MtNEDcDYAAzYOpydkw6QSAzdsfEo2YLgcJAB7Tl7UugMAoyXfkF-f0GOtrjxQn1OILeZU6ZwLvUf3nS4xxcVRl8KjVluJvv1V80xzCVhou880Jpo6uuTcvp1LdauLCQNdjvtedNqhb_En0nxocYknd270kjyb3b7iqz_3Bfn6_t2X65vh9vOHj9dXt4MXUrdBOhkCCvDCzKMzXuv-YlIqkF5p5pXCiU9GO8XcVocJJy8QOFfb0c0hGHFB3qx1DyX_OGJtdpePJfWWlkuuR6G2hnXX5eq6c3u0Mc25r-D7CbjEvhHOsetXimlhRrnlHeAr4EuuteBsD6X_S3mwDOw5FrvGYnss9jEWe-qQWKHazekOy79Z_kP9BnF2k-c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2528637491</pqid></control><display><type>article</type><title>Necessary conditions for weak minima and for strict minima of order two in nonsmooth constrained multiobjective optimization</title><source>SpringerNature Journals</source><creator>Constantin, Elena</creator><creatorcontrib>Constantin, Elena</creatorcontrib><description>In this paper, we give necessary conditions for the existence of a strict local minimum of order two for multiobjective optimization problems with equality and inequality constraints. We suppose that the objective function and the active inequality constraints are only locally Lipschitz. We consider both regular equality constraints and degenerate equality constraints. This article could be considered as a continuation of [E. Constantin, Necessary Conditions for Weak Efficiency for Nonsmooth Degenerate Multiobjective Optimization Problems, J. Global Optim, 75, 111-129, 2019]. We introduce a constraint qualification and a regularity condition, and we show that under each of them, the dual necessary conditions for a weak local minimum of the aforementioned article become of Kuhn-Tucker type.</description><identifier>ISSN: 0925-5001</identifier><identifier>EISSN: 1573-2916</identifier><identifier>DOI: 10.1007/s10898-021-01016-z</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Computer Science ; Constraints ; Equality ; Mathematics ; Mathematics and Statistics ; Minima ; Multiple objective analysis ; Operations Research/Decision Theory ; Optimization ; Real Functions</subject><ispartof>Journal of global optimization, 2021-05, Vol.80 (1), p.177-193</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>COPYRIGHT 2021 Springer</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-5a5dde30c39f6a9c88de3155705c781c77eb2b98a71a48dbebc3e022746afdd93</citedby><cites>FETCH-LOGICAL-c358t-5a5dde30c39f6a9c88de3155705c781c77eb2b98a71a48dbebc3e022746afdd93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10898-021-01016-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10898-021-01016-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Constantin, Elena</creatorcontrib><title>Necessary conditions for weak minima and for strict minima of order two in nonsmooth constrained multiobjective optimization</title><title>Journal of global optimization</title><addtitle>J Glob Optim</addtitle><description>In this paper, we give necessary conditions for the existence of a strict local minimum of order two for multiobjective optimization problems with equality and inequality constraints. We suppose that the objective function and the active inequality constraints are only locally Lipschitz. We consider both regular equality constraints and degenerate equality constraints. This article could be considered as a continuation of [E. Constantin, Necessary Conditions for Weak Efficiency for Nonsmooth Degenerate Multiobjective Optimization Problems, J. Global Optim, 75, 111-129, 2019]. We introduce a constraint qualification and a regularity condition, and we show that under each of them, the dual necessary conditions for a weak local minimum of the aforementioned article become of Kuhn-Tucker type.</description><subject>Computer Science</subject><subject>Constraints</subject><subject>Equality</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Minima</subject><subject>Multiple objective analysis</subject><subject>Operations Research/Decision Theory</subject><subject>Optimization</subject><subject>Real Functions</subject><issn>0925-5001</issn><issn>1573-2916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kc2OFCEUhYnRxHb0BVyRuK7xAk0By8lEHZOJbnRNKLg10nZBC7ST6fjw0lMad4YF4eR894dDyGsGlwxAva0MtNEDcDYAAzYOpydkw6QSAzdsfEo2YLgcJAB7Tl7UugMAoyXfkF-f0GOtrjxQn1OILeZU6ZwLvUf3nS4xxcVRl8KjVluJvv1V80xzCVhou880Jpo6uuTcvp1LdauLCQNdjvtedNqhb_En0nxocYknd270kjyb3b7iqz_3Bfn6_t2X65vh9vOHj9dXt4MXUrdBOhkCCvDCzKMzXuv-YlIqkF5p5pXCiU9GO8XcVocJJy8QOFfb0c0hGHFB3qx1DyX_OGJtdpePJfWWlkuuR6G2hnXX5eq6c3u0Mc25r-D7CbjEvhHOsetXimlhRrnlHeAr4EuuteBsD6X_S3mwDOw5FrvGYnss9jEWe-qQWKHazekOy79Z_kP9BnF2k-c</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Constantin, Elena</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20210501</creationdate><title>Necessary conditions for weak minima and for strict minima of order two in nonsmooth constrained multiobjective optimization</title><author>Constantin, Elena</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-5a5dde30c39f6a9c88de3155705c781c77eb2b98a71a48dbebc3e022746afdd93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Computer Science</topic><topic>Constraints</topic><topic>Equality</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Minima</topic><topic>Multiple objective analysis</topic><topic>Operations Research/Decision Theory</topic><topic>Optimization</topic><topic>Real Functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Constantin, Elena</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of global optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Constantin, Elena</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Necessary conditions for weak minima and for strict minima of order two in nonsmooth constrained multiobjective optimization</atitle><jtitle>Journal of global optimization</jtitle><stitle>J Glob Optim</stitle><date>2021-05-01</date><risdate>2021</risdate><volume>80</volume><issue>1</issue><spage>177</spage><epage>193</epage><pages>177-193</pages><issn>0925-5001</issn><eissn>1573-2916</eissn><abstract>In this paper, we give necessary conditions for the existence of a strict local minimum of order two for multiobjective optimization problems with equality and inequality constraints. We suppose that the objective function and the active inequality constraints are only locally Lipschitz. We consider both regular equality constraints and degenerate equality constraints. This article could be considered as a continuation of [E. Constantin, Necessary Conditions for Weak Efficiency for Nonsmooth Degenerate Multiobjective Optimization Problems, J. Global Optim, 75, 111-129, 2019]. We introduce a constraint qualification and a regularity condition, and we show that under each of them, the dual necessary conditions for a weak local minimum of the aforementioned article become of Kuhn-Tucker type.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10898-021-01016-z</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0925-5001
ispartof Journal of global optimization, 2021-05, Vol.80 (1), p.177-193
issn 0925-5001
1573-2916
language eng
recordid cdi_proquest_journals_2528637491
source SpringerNature Journals
subjects Computer Science
Constraints
Equality
Mathematics
Mathematics and Statistics
Minima
Multiple objective analysis
Operations Research/Decision Theory
Optimization
Real Functions
title Necessary conditions for weak minima and for strict minima of order two in nonsmooth constrained multiobjective optimization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T13%3A34%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Necessary%20conditions%20for%20weak%20minima%20and%20for%20strict%20minima%20of%20order%20two%20in%20nonsmooth%20constrained%20multiobjective%20optimization&rft.jtitle=Journal%20of%20global%20optimization&rft.au=Constantin,%20Elena&rft.date=2021-05-01&rft.volume=80&rft.issue=1&rft.spage=177&rft.epage=193&rft.pages=177-193&rft.issn=0925-5001&rft.eissn=1573-2916&rft_id=info:doi/10.1007/s10898-021-01016-z&rft_dat=%3Cgale_proqu%3EA718396542%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2528637491&rft_id=info:pmid/&rft_galeid=A718396542&rfr_iscdi=true