Necessary conditions for weak minima and for strict minima of order two in nonsmooth constrained multiobjective optimization
In this paper, we give necessary conditions for the existence of a strict local minimum of order two for multiobjective optimization problems with equality and inequality constraints. We suppose that the objective function and the active inequality constraints are only locally Lipschitz. We consider...
Gespeichert in:
Veröffentlicht in: | Journal of global optimization 2021-05, Vol.80 (1), p.177-193 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 193 |
---|---|
container_issue | 1 |
container_start_page | 177 |
container_title | Journal of global optimization |
container_volume | 80 |
creator | Constantin, Elena |
description | In this paper, we give necessary conditions for the existence of a strict local minimum of order two for multiobjective optimization problems with equality and inequality constraints. We suppose that the objective function and the active inequality constraints are only locally Lipschitz. We consider both regular equality constraints and degenerate equality constraints. This article could be considered as a continuation of [E. Constantin, Necessary Conditions for Weak Efficiency for Nonsmooth Degenerate Multiobjective Optimization Problems, J. Global Optim, 75, 111-129, 2019]. We introduce a constraint qualification and a regularity condition, and we show that under each of them, the dual necessary conditions for a weak local minimum of the aforementioned article become of Kuhn-Tucker type. |
doi_str_mv | 10.1007/s10898-021-01016-z |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2528637491</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A718396542</galeid><sourcerecordid>A718396542</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-5a5dde30c39f6a9c88de3155705c781c77eb2b98a71a48dbebc3e022746afdd93</originalsourceid><addsrcrecordid>eNp9kc2OFCEUhYnRxHb0BVyRuK7xAk0By8lEHZOJbnRNKLg10nZBC7ST6fjw0lMad4YF4eR894dDyGsGlwxAva0MtNEDcDYAAzYOpydkw6QSAzdsfEo2YLgcJAB7Tl7UugMAoyXfkF-f0GOtrjxQn1OILeZU6ZwLvUf3nS4xxcVRl8KjVluJvv1V80xzCVhou880Jpo6uuTcvp1LdauLCQNdjvtedNqhb_En0nxocYknd270kjyb3b7iqz_3Bfn6_t2X65vh9vOHj9dXt4MXUrdBOhkCCvDCzKMzXuv-YlIqkF5p5pXCiU9GO8XcVocJJy8QOFfb0c0hGHFB3qx1DyX_OGJtdpePJfWWlkuuR6G2hnXX5eq6c3u0Mc25r-D7CbjEvhHOsetXimlhRrnlHeAr4EuuteBsD6X_S3mwDOw5FrvGYnss9jEWe-qQWKHazekOy79Z_kP9BnF2k-c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2528637491</pqid></control><display><type>article</type><title>Necessary conditions for weak minima and for strict minima of order two in nonsmooth constrained multiobjective optimization</title><source>SpringerNature Journals</source><creator>Constantin, Elena</creator><creatorcontrib>Constantin, Elena</creatorcontrib><description>In this paper, we give necessary conditions for the existence of a strict local minimum of order two for multiobjective optimization problems with equality and inequality constraints. We suppose that the objective function and the active inequality constraints are only locally Lipschitz. We consider both regular equality constraints and degenerate equality constraints. This article could be considered as a continuation of [E. Constantin, Necessary Conditions for Weak Efficiency for Nonsmooth Degenerate Multiobjective Optimization Problems, J. Global Optim, 75, 111-129, 2019]. We introduce a constraint qualification and a regularity condition, and we show that under each of them, the dual necessary conditions for a weak local minimum of the aforementioned article become of Kuhn-Tucker type.</description><identifier>ISSN: 0925-5001</identifier><identifier>EISSN: 1573-2916</identifier><identifier>DOI: 10.1007/s10898-021-01016-z</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Computer Science ; Constraints ; Equality ; Mathematics ; Mathematics and Statistics ; Minima ; Multiple objective analysis ; Operations Research/Decision Theory ; Optimization ; Real Functions</subject><ispartof>Journal of global optimization, 2021-05, Vol.80 (1), p.177-193</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>COPYRIGHT 2021 Springer</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-5a5dde30c39f6a9c88de3155705c781c77eb2b98a71a48dbebc3e022746afdd93</citedby><cites>FETCH-LOGICAL-c358t-5a5dde30c39f6a9c88de3155705c781c77eb2b98a71a48dbebc3e022746afdd93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10898-021-01016-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10898-021-01016-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Constantin, Elena</creatorcontrib><title>Necessary conditions for weak minima and for strict minima of order two in nonsmooth constrained multiobjective optimization</title><title>Journal of global optimization</title><addtitle>J Glob Optim</addtitle><description>In this paper, we give necessary conditions for the existence of a strict local minimum of order two for multiobjective optimization problems with equality and inequality constraints. We suppose that the objective function and the active inequality constraints are only locally Lipschitz. We consider both regular equality constraints and degenerate equality constraints. This article could be considered as a continuation of [E. Constantin, Necessary Conditions for Weak Efficiency for Nonsmooth Degenerate Multiobjective Optimization Problems, J. Global Optim, 75, 111-129, 2019]. We introduce a constraint qualification and a regularity condition, and we show that under each of them, the dual necessary conditions for a weak local minimum of the aforementioned article become of Kuhn-Tucker type.</description><subject>Computer Science</subject><subject>Constraints</subject><subject>Equality</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Minima</subject><subject>Multiple objective analysis</subject><subject>Operations Research/Decision Theory</subject><subject>Optimization</subject><subject>Real Functions</subject><issn>0925-5001</issn><issn>1573-2916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kc2OFCEUhYnRxHb0BVyRuK7xAk0By8lEHZOJbnRNKLg10nZBC7ST6fjw0lMad4YF4eR894dDyGsGlwxAva0MtNEDcDYAAzYOpydkw6QSAzdsfEo2YLgcJAB7Tl7UugMAoyXfkF-f0GOtrjxQn1OILeZU6ZwLvUf3nS4xxcVRl8KjVluJvv1V80xzCVhou880Jpo6uuTcvp1LdauLCQNdjvtedNqhb_En0nxocYknd270kjyb3b7iqz_3Bfn6_t2X65vh9vOHj9dXt4MXUrdBOhkCCvDCzKMzXuv-YlIqkF5p5pXCiU9GO8XcVocJJy8QOFfb0c0hGHFB3qx1DyX_OGJtdpePJfWWlkuuR6G2hnXX5eq6c3u0Mc25r-D7CbjEvhHOsetXimlhRrnlHeAr4EuuteBsD6X_S3mwDOw5FrvGYnss9jEWe-qQWKHazekOy79Z_kP9BnF2k-c</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Constantin, Elena</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20210501</creationdate><title>Necessary conditions for weak minima and for strict minima of order two in nonsmooth constrained multiobjective optimization</title><author>Constantin, Elena</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-5a5dde30c39f6a9c88de3155705c781c77eb2b98a71a48dbebc3e022746afdd93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Computer Science</topic><topic>Constraints</topic><topic>Equality</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Minima</topic><topic>Multiple objective analysis</topic><topic>Operations Research/Decision Theory</topic><topic>Optimization</topic><topic>Real Functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Constantin, Elena</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of global optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Constantin, Elena</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Necessary conditions for weak minima and for strict minima of order two in nonsmooth constrained multiobjective optimization</atitle><jtitle>Journal of global optimization</jtitle><stitle>J Glob Optim</stitle><date>2021-05-01</date><risdate>2021</risdate><volume>80</volume><issue>1</issue><spage>177</spage><epage>193</epage><pages>177-193</pages><issn>0925-5001</issn><eissn>1573-2916</eissn><abstract>In this paper, we give necessary conditions for the existence of a strict local minimum of order two for multiobjective optimization problems with equality and inequality constraints. We suppose that the objective function and the active inequality constraints are only locally Lipschitz. We consider both regular equality constraints and degenerate equality constraints. This article could be considered as a continuation of [E. Constantin, Necessary Conditions for Weak Efficiency for Nonsmooth Degenerate Multiobjective Optimization Problems, J. Global Optim, 75, 111-129, 2019]. We introduce a constraint qualification and a regularity condition, and we show that under each of them, the dual necessary conditions for a weak local minimum of the aforementioned article become of Kuhn-Tucker type.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10898-021-01016-z</doi><tpages>17</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0925-5001 |
ispartof | Journal of global optimization, 2021-05, Vol.80 (1), p.177-193 |
issn | 0925-5001 1573-2916 |
language | eng |
recordid | cdi_proquest_journals_2528637491 |
source | SpringerNature Journals |
subjects | Computer Science Constraints Equality Mathematics Mathematics and Statistics Minima Multiple objective analysis Operations Research/Decision Theory Optimization Real Functions |
title | Necessary conditions for weak minima and for strict minima of order two in nonsmooth constrained multiobjective optimization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T13%3A34%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Necessary%20conditions%20for%20weak%20minima%20and%20for%20strict%20minima%20of%20order%20two%20in%20nonsmooth%20constrained%20multiobjective%20optimization&rft.jtitle=Journal%20of%20global%20optimization&rft.au=Constantin,%20Elena&rft.date=2021-05-01&rft.volume=80&rft.issue=1&rft.spage=177&rft.epage=193&rft.pages=177-193&rft.issn=0925-5001&rft.eissn=1573-2916&rft_id=info:doi/10.1007/s10898-021-01016-z&rft_dat=%3Cgale_proqu%3EA718396542%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2528637491&rft_id=info:pmid/&rft_galeid=A718396542&rfr_iscdi=true |