A distance for belief functions of orderable set

•We proposed a distance for orderable sets.•We discussed the relevant properties of the new distance.•We use the new distance to solve the project budget problem. This paper proposes a distance for measuring conflicts between ordered sets. A similarity coefficient is defined to quantify the distance...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pattern recognition letters 2021-05, Vol.145, p.165-170
Hauptverfasser: Cheng, Cuiping, Xiao, Fuyuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 170
container_issue
container_start_page 165
container_title Pattern recognition letters
container_volume 145
creator Cheng, Cuiping
Xiao, Fuyuan
description •We proposed a distance for orderable sets.•We discussed the relevant properties of the new distance.•We use the new distance to solve the project budget problem. This paper proposes a distance for measuring conflicts between ordered sets. A similarity coefficient is defined to quantify the distance between focal elements and it can characterize the differences in the distribution of sets in a continuous measurement space, so the distance would still vary with the physical distance even when the focal elements do not overlap. We prove that the proposed method satisfies the properties of distance, and discuss some other properties of the presented approach. An example of engineering budget indicates that the proposed distance can effectively measure the similarity of orderable set. By comparing with the existing methods, we show that the proposed metric is more robust and accurate in characterizing the aggrement of ordered sets.
doi_str_mv 10.1016/j.patrec.2021.02.010
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2528501071</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167865521000659</els_id><sourcerecordid>2528501071</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-c11bf4096858fe5e60550a62b1b118a6313eb733b375a0e31fd04f51b77b1de53</originalsourceid><addsrcrecordid>eNp9kE1LxDAURYMoOI7-AxcF163vJU3T2QjD4BcMuNF1SNoXSBmbMWkF_70Z6trV25x7H_cwdotQIWBzP1RHM0XqKg4cK-AVIJyxFbaKl0rU9TlbZUyVbSPlJbtKaQCARmzaFYNt0fs0mbGjwoVYWDp4coWbx27yYUxFcEWIPUVjD1Qkmq7ZhTOHRDd_d80-nh7fdy_l_u35dbfdl50Q9VR2iNbVsGla2TqS1ICUYBpu0SK2phEoyCohrFDSAAl0PdROolXKYk9SrNnd0nuM4WumNOkhzHHMLzWXvJV5osJM1QvVxZBSJKeP0X-a-KMR9MmNHvTiRp_caOA6B3PsYYlRXvDtKerUecoOep_RSffB_1_wCzpGbLQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2528501071</pqid></control><display><type>article</type><title>A distance for belief functions of orderable set</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Cheng, Cuiping ; Xiao, Fuyuan</creator><creatorcontrib>Cheng, Cuiping ; Xiao, Fuyuan</creatorcontrib><description>•We proposed a distance for orderable sets.•We discussed the relevant properties of the new distance.•We use the new distance to solve the project budget problem. This paper proposes a distance for measuring conflicts between ordered sets. A similarity coefficient is defined to quantify the distance between focal elements and it can characterize the differences in the distribution of sets in a continuous measurement space, so the distance would still vary with the physical distance even when the focal elements do not overlap. We prove that the proposed method satisfies the properties of distance, and discuss some other properties of the presented approach. An example of engineering budget indicates that the proposed distance can effectively measure the similarity of orderable set. By comparing with the existing methods, we show that the proposed metric is more robust and accurate in characterizing the aggrement of ordered sets.</description><identifier>ISSN: 0167-8655</identifier><identifier>EISSN: 1872-7344</identifier><identifier>DOI: 10.1016/j.patrec.2021.02.010</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Belief function ; Distance metric ; Hesitant fuzzy linguistic set ; Orderable sets</subject><ispartof>Pattern recognition letters, 2021-05, Vol.145, p.165-170</ispartof><rights>2021 Elsevier B.V.</rights><rights>Copyright Elsevier Science Ltd. May 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-c11bf4096858fe5e60550a62b1b118a6313eb733b375a0e31fd04f51b77b1de53</citedby><cites>FETCH-LOGICAL-c334t-c11bf4096858fe5e60550a62b1b118a6313eb733b375a0e31fd04f51b77b1de53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.patrec.2021.02.010$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3549,27923,27924,45994</link.rule.ids></links><search><creatorcontrib>Cheng, Cuiping</creatorcontrib><creatorcontrib>Xiao, Fuyuan</creatorcontrib><title>A distance for belief functions of orderable set</title><title>Pattern recognition letters</title><description>•We proposed a distance for orderable sets.•We discussed the relevant properties of the new distance.•We use the new distance to solve the project budget problem. This paper proposes a distance for measuring conflicts between ordered sets. A similarity coefficient is defined to quantify the distance between focal elements and it can characterize the differences in the distribution of sets in a continuous measurement space, so the distance would still vary with the physical distance even when the focal elements do not overlap. We prove that the proposed method satisfies the properties of distance, and discuss some other properties of the presented approach. An example of engineering budget indicates that the proposed distance can effectively measure the similarity of orderable set. By comparing with the existing methods, we show that the proposed metric is more robust and accurate in characterizing the aggrement of ordered sets.</description><subject>Belief function</subject><subject>Distance metric</subject><subject>Hesitant fuzzy linguistic set</subject><subject>Orderable sets</subject><issn>0167-8655</issn><issn>1872-7344</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAURYMoOI7-AxcF163vJU3T2QjD4BcMuNF1SNoXSBmbMWkF_70Z6trV25x7H_cwdotQIWBzP1RHM0XqKg4cK-AVIJyxFbaKl0rU9TlbZUyVbSPlJbtKaQCARmzaFYNt0fs0mbGjwoVYWDp4coWbx27yYUxFcEWIPUVjD1Qkmq7ZhTOHRDd_d80-nh7fdy_l_u35dbfdl50Q9VR2iNbVsGla2TqS1ICUYBpu0SK2phEoyCohrFDSAAl0PdROolXKYk9SrNnd0nuM4WumNOkhzHHMLzWXvJV5osJM1QvVxZBSJKeP0X-a-KMR9MmNHvTiRp_caOA6B3PsYYlRXvDtKerUecoOep_RSffB_1_wCzpGbLQ</recordid><startdate>202105</startdate><enddate>202105</enddate><creator>Cheng, Cuiping</creator><creator>Xiao, Fuyuan</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TK</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>202105</creationdate><title>A distance for belief functions of orderable set</title><author>Cheng, Cuiping ; Xiao, Fuyuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-c11bf4096858fe5e60550a62b1b118a6313eb733b375a0e31fd04f51b77b1de53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Belief function</topic><topic>Distance metric</topic><topic>Hesitant fuzzy linguistic set</topic><topic>Orderable sets</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cheng, Cuiping</creatorcontrib><creatorcontrib>Xiao, Fuyuan</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Pattern recognition letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cheng, Cuiping</au><au>Xiao, Fuyuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A distance for belief functions of orderable set</atitle><jtitle>Pattern recognition letters</jtitle><date>2021-05</date><risdate>2021</risdate><volume>145</volume><spage>165</spage><epage>170</epage><pages>165-170</pages><issn>0167-8655</issn><eissn>1872-7344</eissn><abstract>•We proposed a distance for orderable sets.•We discussed the relevant properties of the new distance.•We use the new distance to solve the project budget problem. This paper proposes a distance for measuring conflicts between ordered sets. A similarity coefficient is defined to quantify the distance between focal elements and it can characterize the differences in the distribution of sets in a continuous measurement space, so the distance would still vary with the physical distance even when the focal elements do not overlap. We prove that the proposed method satisfies the properties of distance, and discuss some other properties of the presented approach. An example of engineering budget indicates that the proposed distance can effectively measure the similarity of orderable set. By comparing with the existing methods, we show that the proposed metric is more robust and accurate in characterizing the aggrement of ordered sets.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.patrec.2021.02.010</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0167-8655
ispartof Pattern recognition letters, 2021-05, Vol.145, p.165-170
issn 0167-8655
1872-7344
language eng
recordid cdi_proquest_journals_2528501071
source ScienceDirect Journals (5 years ago - present)
subjects Belief function
Distance metric
Hesitant fuzzy linguistic set
Orderable sets
title A distance for belief functions of orderable set
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T09%3A18%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20distance%20for%20belief%20functions%20of%20orderable%20set&rft.jtitle=Pattern%20recognition%20letters&rft.au=Cheng,%20Cuiping&rft.date=2021-05&rft.volume=145&rft.spage=165&rft.epage=170&rft.pages=165-170&rft.issn=0167-8655&rft.eissn=1872-7344&rft_id=info:doi/10.1016/j.patrec.2021.02.010&rft_dat=%3Cproquest_cross%3E2528501071%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2528501071&rft_id=info:pmid/&rft_els_id=S0167865521000659&rfr_iscdi=true