The ZTF Source Classification Project. I. Methods and Infrastructure

The Zwicky Transient Facility (ZTF) has been observing the entire northern sky since the start of 2018 down to a magnitude of 20.5 (5 σ for 30 s exposure) in the g , r , and i filters. Over the course of two years, ZTF has obtained light curves of more than a billion sources, each with 50–1000 epoch...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Astron.J 2021-06, Vol.161 (6), p.267
Hauptverfasser: van Roestel, Jan, Duev, Dmitry A., Mahabal, Ashish A., Coughlin, Michael W., Mróz, Przemek, Burdge, Kevin, Drake, Andrew, Graham, Matthew J., Hillenbrand, Lynne, Bellm, Eric C., Kupfer, Thomas, Delacroix, Alexandre, Fremling, C., Golkhou, V. Zach, Hale, David, Laher, Russ R., Masci, Frank J., Riddle, Reed, Rosnet, Philippe, Rusholme, Ben, Smith, Roger, Soumagnac, Maayane T., Walters, Richard, Prince, Thomas A., Kulkarni, S. R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 6
container_start_page 267
container_title Astron.J
container_volume 161
creator van Roestel, Jan
Duev, Dmitry A.
Mahabal, Ashish A.
Coughlin, Michael W.
Mróz, Przemek
Burdge, Kevin
Drake, Andrew
Graham, Matthew J.
Hillenbrand, Lynne
Bellm, Eric C.
Kupfer, Thomas
Delacroix, Alexandre
Fremling, C.
Golkhou, V. Zach
Hale, David
Laher, Russ R.
Masci, Frank J.
Riddle, Reed
Rosnet, Philippe
Rusholme, Ben
Smith, Roger
Soumagnac, Maayane T.
Walters, Richard
Prince, Thomas A.
Kulkarni, S. R.
description The Zwicky Transient Facility (ZTF) has been observing the entire northern sky since the start of 2018 down to a magnitude of 20.5 (5 σ for 30 s exposure) in the g , r , and i filters. Over the course of two years, ZTF has obtained light curves of more than a billion sources, each with 50–1000 epochs per light curve in g and r , and fewer in i . To be able to use the information contained in the light curves of variable sources for new scientific discoveries, an efficient and flexible framework is needed to classify them. In this paper, we introduce the methods and infrastructure that will be used to classify all ZTF light curves. Our approach aims to be flexible and modular and allows the use of a dynamical classification scheme and labels, continuously evolving training sets, and the use of different machine-learning classifier types and architectures. With this setup, we are able to continuously update and improve the classification of ZTF light curves as new data become available, training samples are updated, and new classes need to be incorporated.
doi_str_mv 10.3847/1538-3881/abe853
format Article
fullrecord <record><control><sourceid>proquest_O3W</sourceid><recordid>TN_cdi_proquest_journals_2528498418</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2528498418</sourcerecordid><originalsourceid>FETCH-LOGICAL-c477t-f28ab9f6f7b595f48c1737a59a3e0b8565a9ff862b54aec9bdd58a0373f59523</originalsourceid><addsrcrecordid>eNp1kMFLwzAUh4MoOKd3j0VPgt2SpmnS45jODSYK9uQlpGlCM2Yzk1TwvzelMk-eHjy-34_3PgCuEZxhltM5IpilmDE0F7ViBJ-AyXF1CiYQwjwtMlKcgwvvdxAixGA-AQ9Vq5L3apW82d5JlSz3wnujjRTB2C55dXanZJglm1nyrEJrG5-Irkk2nXbCB9fL0Dt1Cc602Ht19TunoFo9Vst1un152iwX21TmlIZUZ0zUpS40rUlJdM4kopgKUgqsYM1IQUSpNSuymuRCybJuGsIExBTryGd4Cm7GWuuD4V6aoGQrbdfFCzliBYGURuhuhFqx5wdnPoT75lYYvl5s-bCDOMtKXOAvFNnbkT04-9krH_guWujiCzwjGctLliMWKThS0lnvndLHWgT54J4Povkgmo_uY-R-jBh7-Ov8F_8BmaaCVQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2528498418</pqid></control><display><type>article</type><title>The ZTF Source Classification Project. I. Methods and Infrastructure</title><source>Institute of Physics Open Access Journal Titles</source><creator>van Roestel, Jan ; Duev, Dmitry A. ; Mahabal, Ashish A. ; Coughlin, Michael W. ; Mróz, Przemek ; Burdge, Kevin ; Drake, Andrew ; Graham, Matthew J. ; Hillenbrand, Lynne ; Bellm, Eric C. ; Kupfer, Thomas ; Delacroix, Alexandre ; Fremling, C. ; Golkhou, V. Zach ; Hale, David ; Laher, Russ R. ; Masci, Frank J. ; Riddle, Reed ; Rosnet, Philippe ; Rusholme, Ben ; Smith, Roger ; Soumagnac, Maayane T. ; Walters, Richard ; Prince, Thomas A. ; Kulkarni, S. R.</creator><creatorcontrib>van Roestel, Jan ; Duev, Dmitry A. ; Mahabal, Ashish A. ; Coughlin, Michael W. ; Mróz, Przemek ; Burdge, Kevin ; Drake, Andrew ; Graham, Matthew J. ; Hillenbrand, Lynne ; Bellm, Eric C. ; Kupfer, Thomas ; Delacroix, Alexandre ; Fremling, C. ; Golkhou, V. Zach ; Hale, David ; Laher, Russ R. ; Masci, Frank J. ; Riddle, Reed ; Rosnet, Philippe ; Rusholme, Ben ; Smith, Roger ; Soumagnac, Maayane T. ; Walters, Richard ; Prince, Thomas A. ; Kulkarni, S. R. ; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><description>The Zwicky Transient Facility (ZTF) has been observing the entire northern sky since the start of 2018 down to a magnitude of 20.5 (5 σ for 30 s exposure) in the g , r , and i filters. Over the course of two years, ZTF has obtained light curves of more than a billion sources, each with 50–1000 epochs per light curve in g and r , and fewer in i . To be able to use the information contained in the light curves of variable sources for new scientific discoveries, an efficient and flexible framework is needed to classify them. In this paper, we introduce the methods and infrastructure that will be used to classify all ZTF light curves. Our approach aims to be flexible and modular and allows the use of a dynamical classification scheme and labels, continuously evolving training sets, and the use of different machine-learning classifier types and architectures. With this setup, we are able to continuously update and improve the classification of ZTF light curves as new data become available, training samples are updated, and new classes need to be incorporated.</description><identifier>ISSN: 0004-6256</identifier><identifier>EISSN: 1538-3881</identifier><identifier>DOI: 10.3847/1538-3881/abe853</identifier><language>eng</language><publisher>Madison: The American Astronomical Society</publisher><subject>Astronomy ; ASTRONOMY AND ASTROPHYSICS ; celestial objects catalog ; Celestial objects catalogs ; Classification ; Infrastructure ; Intrinsic variable stars ; Light curve ; Machine learning ; Northern sky ; Physics ; Surveys ; Training ; Variable stars</subject><ispartof>Astron.J, 2021-06, Vol.161 (6), p.267</ispartof><rights>2021. The American Astronomical Society. All rights reserved.</rights><rights>Copyright IOP Publishing Jun 2021</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c477t-f28ab9f6f7b595f48c1737a59a3e0b8565a9ff862b54aec9bdd58a0373f59523</citedby><cites>FETCH-LOGICAL-c477t-f28ab9f6f7b595f48c1737a59a3e0b8565a9ff862b54aec9bdd58a0373f59523</cites><orcidid>0000-0001-8205-2506 ; 0000-0001-8018-5348 ; 0000-0002-0387-370X ; 0000-0003-2242-0244 ; 0000-0002-8532-9395 ; 0000-0002-7226-836X ; 0000-0001-5060-8733 ; 0000-0001-5390-8563 ; 0000-0002-4223-103X ; 0000-0001-7062-9726 ; 0000-0002-3168-0139 ; 0000-0001-6753-1488 ; 0000-0002-2626-2872 ; 0000-0001-7648-4142 ; 0000-0002-8262-2924 ; 0000-0001-7016-1692 ; 0000-0003-2451-5482 ; 0000-0002-6099-7565 ; 0000-0002-8850-3627 ; 0000-0002-6540-1484 ; 0000000170629726 ; 0000000288503627 ; 0000000170161692 ; 0000000324515482 ; 000000024223103X ; 0000000226262872 ; 0000000285329395 ; 000000020387370X ; 0000000150608733 ; 0000000265401484 ; 0000000167531488 ; 0000000260997565 ; 0000000282622924 ; 0000000322420244 ; 0000000231680139 ; 0000000176484142 ; 0000000180185348 ; 0000000153908563 ; 000000027226836X ; 0000000182052506</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-3881/abe853/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>230,314,780,784,885,27924,27925,38868,38890,53840,53867</link.rule.ids><linktorsrc>$$Uhttps://iopscience.iop.org/article/10.3847/1538-3881/abe853$$EView_record_in_IOP_Publishing$$FView_record_in_$$GIOP_Publishing</linktorsrc><backlink>$$Uhttps://hal.science/hal-03229363$$DView record in HAL$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1865077$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>van Roestel, Jan</creatorcontrib><creatorcontrib>Duev, Dmitry A.</creatorcontrib><creatorcontrib>Mahabal, Ashish A.</creatorcontrib><creatorcontrib>Coughlin, Michael W.</creatorcontrib><creatorcontrib>Mróz, Przemek</creatorcontrib><creatorcontrib>Burdge, Kevin</creatorcontrib><creatorcontrib>Drake, Andrew</creatorcontrib><creatorcontrib>Graham, Matthew J.</creatorcontrib><creatorcontrib>Hillenbrand, Lynne</creatorcontrib><creatorcontrib>Bellm, Eric C.</creatorcontrib><creatorcontrib>Kupfer, Thomas</creatorcontrib><creatorcontrib>Delacroix, Alexandre</creatorcontrib><creatorcontrib>Fremling, C.</creatorcontrib><creatorcontrib>Golkhou, V. Zach</creatorcontrib><creatorcontrib>Hale, David</creatorcontrib><creatorcontrib>Laher, Russ R.</creatorcontrib><creatorcontrib>Masci, Frank J.</creatorcontrib><creatorcontrib>Riddle, Reed</creatorcontrib><creatorcontrib>Rosnet, Philippe</creatorcontrib><creatorcontrib>Rusholme, Ben</creatorcontrib><creatorcontrib>Smith, Roger</creatorcontrib><creatorcontrib>Soumagnac, Maayane T.</creatorcontrib><creatorcontrib>Walters, Richard</creatorcontrib><creatorcontrib>Prince, Thomas A.</creatorcontrib><creatorcontrib>Kulkarni, S. R.</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><title>The ZTF Source Classification Project. I. Methods and Infrastructure</title><title>Astron.J</title><addtitle>AJ</addtitle><addtitle>Astron. J</addtitle><description>The Zwicky Transient Facility (ZTF) has been observing the entire northern sky since the start of 2018 down to a magnitude of 20.5 (5 σ for 30 s exposure) in the g , r , and i filters. Over the course of two years, ZTF has obtained light curves of more than a billion sources, each with 50–1000 epochs per light curve in g and r , and fewer in i . To be able to use the information contained in the light curves of variable sources for new scientific discoveries, an efficient and flexible framework is needed to classify them. In this paper, we introduce the methods and infrastructure that will be used to classify all ZTF light curves. Our approach aims to be flexible and modular and allows the use of a dynamical classification scheme and labels, continuously evolving training sets, and the use of different machine-learning classifier types and architectures. With this setup, we are able to continuously update and improve the classification of ZTF light curves as new data become available, training samples are updated, and new classes need to be incorporated.</description><subject>Astronomy</subject><subject>ASTRONOMY AND ASTROPHYSICS</subject><subject>celestial objects catalog</subject><subject>Celestial objects catalogs</subject><subject>Classification</subject><subject>Infrastructure</subject><subject>Intrinsic variable stars</subject><subject>Light curve</subject><subject>Machine learning</subject><subject>Northern sky</subject><subject>Physics</subject><subject>Surveys</subject><subject>Training</subject><subject>Variable stars</subject><issn>0004-6256</issn><issn>1538-3881</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kMFLwzAUh4MoOKd3j0VPgt2SpmnS45jODSYK9uQlpGlCM2Yzk1TwvzelMk-eHjy-34_3PgCuEZxhltM5IpilmDE0F7ViBJ-AyXF1CiYQwjwtMlKcgwvvdxAixGA-AQ9Vq5L3apW82d5JlSz3wnujjRTB2C55dXanZJglm1nyrEJrG5-Irkk2nXbCB9fL0Dt1Cc602Ht19TunoFo9Vst1un152iwX21TmlIZUZ0zUpS40rUlJdM4kopgKUgqsYM1IQUSpNSuymuRCybJuGsIExBTryGd4Cm7GWuuD4V6aoGQrbdfFCzliBYGURuhuhFqx5wdnPoT75lYYvl5s-bCDOMtKXOAvFNnbkT04-9krH_guWujiCzwjGctLliMWKThS0lnvndLHWgT54J4Povkgmo_uY-R-jBh7-Ov8F_8BmaaCVQ</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>van Roestel, Jan</creator><creator>Duev, Dmitry A.</creator><creator>Mahabal, Ashish A.</creator><creator>Coughlin, Michael W.</creator><creator>Mróz, Przemek</creator><creator>Burdge, Kevin</creator><creator>Drake, Andrew</creator><creator>Graham, Matthew J.</creator><creator>Hillenbrand, Lynne</creator><creator>Bellm, Eric C.</creator><creator>Kupfer, Thomas</creator><creator>Delacroix, Alexandre</creator><creator>Fremling, C.</creator><creator>Golkhou, V. Zach</creator><creator>Hale, David</creator><creator>Laher, Russ R.</creator><creator>Masci, Frank J.</creator><creator>Riddle, Reed</creator><creator>Rosnet, Philippe</creator><creator>Rusholme, Ben</creator><creator>Smith, Roger</creator><creator>Soumagnac, Maayane T.</creator><creator>Walters, Richard</creator><creator>Prince, Thomas A.</creator><creator>Kulkarni, S. R.</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><scope>1XC</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-8205-2506</orcidid><orcidid>https://orcid.org/0000-0001-8018-5348</orcidid><orcidid>https://orcid.org/0000-0002-0387-370X</orcidid><orcidid>https://orcid.org/0000-0003-2242-0244</orcidid><orcidid>https://orcid.org/0000-0002-8532-9395</orcidid><orcidid>https://orcid.org/0000-0002-7226-836X</orcidid><orcidid>https://orcid.org/0000-0001-5060-8733</orcidid><orcidid>https://orcid.org/0000-0001-5390-8563</orcidid><orcidid>https://orcid.org/0000-0002-4223-103X</orcidid><orcidid>https://orcid.org/0000-0001-7062-9726</orcidid><orcidid>https://orcid.org/0000-0002-3168-0139</orcidid><orcidid>https://orcid.org/0000-0001-6753-1488</orcidid><orcidid>https://orcid.org/0000-0002-2626-2872</orcidid><orcidid>https://orcid.org/0000-0001-7648-4142</orcidid><orcidid>https://orcid.org/0000-0002-8262-2924</orcidid><orcidid>https://orcid.org/0000-0001-7016-1692</orcidid><orcidid>https://orcid.org/0000-0003-2451-5482</orcidid><orcidid>https://orcid.org/0000-0002-6099-7565</orcidid><orcidid>https://orcid.org/0000-0002-8850-3627</orcidid><orcidid>https://orcid.org/0000-0002-6540-1484</orcidid><orcidid>https://orcid.org/0000000170629726</orcidid><orcidid>https://orcid.org/0000000288503627</orcidid><orcidid>https://orcid.org/0000000170161692</orcidid><orcidid>https://orcid.org/0000000324515482</orcidid><orcidid>https://orcid.org/000000024223103X</orcidid><orcidid>https://orcid.org/0000000226262872</orcidid><orcidid>https://orcid.org/0000000285329395</orcidid><orcidid>https://orcid.org/000000020387370X</orcidid><orcidid>https://orcid.org/0000000150608733</orcidid><orcidid>https://orcid.org/0000000265401484</orcidid><orcidid>https://orcid.org/0000000167531488</orcidid><orcidid>https://orcid.org/0000000260997565</orcidid><orcidid>https://orcid.org/0000000282622924</orcidid><orcidid>https://orcid.org/0000000322420244</orcidid><orcidid>https://orcid.org/0000000231680139</orcidid><orcidid>https://orcid.org/0000000176484142</orcidid><orcidid>https://orcid.org/0000000180185348</orcidid><orcidid>https://orcid.org/0000000153908563</orcidid><orcidid>https://orcid.org/000000027226836X</orcidid><orcidid>https://orcid.org/0000000182052506</orcidid></search><sort><creationdate>20210601</creationdate><title>The ZTF Source Classification Project. I. Methods and Infrastructure</title><author>van Roestel, Jan ; Duev, Dmitry A. ; Mahabal, Ashish A. ; Coughlin, Michael W. ; Mróz, Przemek ; Burdge, Kevin ; Drake, Andrew ; Graham, Matthew J. ; Hillenbrand, Lynne ; Bellm, Eric C. ; Kupfer, Thomas ; Delacroix, Alexandre ; Fremling, C. ; Golkhou, V. Zach ; Hale, David ; Laher, Russ R. ; Masci, Frank J. ; Riddle, Reed ; Rosnet, Philippe ; Rusholme, Ben ; Smith, Roger ; Soumagnac, Maayane T. ; Walters, Richard ; Prince, Thomas A. ; Kulkarni, S. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c477t-f28ab9f6f7b595f48c1737a59a3e0b8565a9ff862b54aec9bdd58a0373f59523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Astronomy</topic><topic>ASTRONOMY AND ASTROPHYSICS</topic><topic>celestial objects catalog</topic><topic>Celestial objects catalogs</topic><topic>Classification</topic><topic>Infrastructure</topic><topic>Intrinsic variable stars</topic><topic>Light curve</topic><topic>Machine learning</topic><topic>Northern sky</topic><topic>Physics</topic><topic>Surveys</topic><topic>Training</topic><topic>Variable stars</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>van Roestel, Jan</creatorcontrib><creatorcontrib>Duev, Dmitry A.</creatorcontrib><creatorcontrib>Mahabal, Ashish A.</creatorcontrib><creatorcontrib>Coughlin, Michael W.</creatorcontrib><creatorcontrib>Mróz, Przemek</creatorcontrib><creatorcontrib>Burdge, Kevin</creatorcontrib><creatorcontrib>Drake, Andrew</creatorcontrib><creatorcontrib>Graham, Matthew J.</creatorcontrib><creatorcontrib>Hillenbrand, Lynne</creatorcontrib><creatorcontrib>Bellm, Eric C.</creatorcontrib><creatorcontrib>Kupfer, Thomas</creatorcontrib><creatorcontrib>Delacroix, Alexandre</creatorcontrib><creatorcontrib>Fremling, C.</creatorcontrib><creatorcontrib>Golkhou, V. Zach</creatorcontrib><creatorcontrib>Hale, David</creatorcontrib><creatorcontrib>Laher, Russ R.</creatorcontrib><creatorcontrib>Masci, Frank J.</creatorcontrib><creatorcontrib>Riddle, Reed</creatorcontrib><creatorcontrib>Rosnet, Philippe</creatorcontrib><creatorcontrib>Rusholme, Ben</creatorcontrib><creatorcontrib>Smith, Roger</creatorcontrib><creatorcontrib>Soumagnac, Maayane T.</creatorcontrib><creatorcontrib>Walters, Richard</creatorcontrib><creatorcontrib>Prince, Thomas A.</creatorcontrib><creatorcontrib>Kulkarni, S. R.</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Astron.J</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>van Roestel, Jan</au><au>Duev, Dmitry A.</au><au>Mahabal, Ashish A.</au><au>Coughlin, Michael W.</au><au>Mróz, Przemek</au><au>Burdge, Kevin</au><au>Drake, Andrew</au><au>Graham, Matthew J.</au><au>Hillenbrand, Lynne</au><au>Bellm, Eric C.</au><au>Kupfer, Thomas</au><au>Delacroix, Alexandre</au><au>Fremling, C.</au><au>Golkhou, V. Zach</au><au>Hale, David</au><au>Laher, Russ R.</au><au>Masci, Frank J.</au><au>Riddle, Reed</au><au>Rosnet, Philippe</au><au>Rusholme, Ben</au><au>Smith, Roger</au><au>Soumagnac, Maayane T.</au><au>Walters, Richard</au><au>Prince, Thomas A.</au><au>Kulkarni, S. R.</au><aucorp>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The ZTF Source Classification Project. I. Methods and Infrastructure</atitle><jtitle>Astron.J</jtitle><stitle>AJ</stitle><addtitle>Astron. J</addtitle><date>2021-06-01</date><risdate>2021</risdate><volume>161</volume><issue>6</issue><spage>267</spage><pages>267-</pages><issn>0004-6256</issn><eissn>1538-3881</eissn><abstract>The Zwicky Transient Facility (ZTF) has been observing the entire northern sky since the start of 2018 down to a magnitude of 20.5 (5 σ for 30 s exposure) in the g , r , and i filters. Over the course of two years, ZTF has obtained light curves of more than a billion sources, each with 50–1000 epochs per light curve in g and r , and fewer in i . To be able to use the information contained in the light curves of variable sources for new scientific discoveries, an efficient and flexible framework is needed to classify them. In this paper, we introduce the methods and infrastructure that will be used to classify all ZTF light curves. Our approach aims to be flexible and modular and allows the use of a dynamical classification scheme and labels, continuously evolving training sets, and the use of different machine-learning classifier types and architectures. With this setup, we are able to continuously update and improve the classification of ZTF light curves as new data become available, training samples are updated, and new classes need to be incorporated.</abstract><cop>Madison</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-3881/abe853</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-8205-2506</orcidid><orcidid>https://orcid.org/0000-0001-8018-5348</orcidid><orcidid>https://orcid.org/0000-0002-0387-370X</orcidid><orcidid>https://orcid.org/0000-0003-2242-0244</orcidid><orcidid>https://orcid.org/0000-0002-8532-9395</orcidid><orcidid>https://orcid.org/0000-0002-7226-836X</orcidid><orcidid>https://orcid.org/0000-0001-5060-8733</orcidid><orcidid>https://orcid.org/0000-0001-5390-8563</orcidid><orcidid>https://orcid.org/0000-0002-4223-103X</orcidid><orcidid>https://orcid.org/0000-0001-7062-9726</orcidid><orcidid>https://orcid.org/0000-0002-3168-0139</orcidid><orcidid>https://orcid.org/0000-0001-6753-1488</orcidid><orcidid>https://orcid.org/0000-0002-2626-2872</orcidid><orcidid>https://orcid.org/0000-0001-7648-4142</orcidid><orcidid>https://orcid.org/0000-0002-8262-2924</orcidid><orcidid>https://orcid.org/0000-0001-7016-1692</orcidid><orcidid>https://orcid.org/0000-0003-2451-5482</orcidid><orcidid>https://orcid.org/0000-0002-6099-7565</orcidid><orcidid>https://orcid.org/0000-0002-8850-3627</orcidid><orcidid>https://orcid.org/0000-0002-6540-1484</orcidid><orcidid>https://orcid.org/0000000170629726</orcidid><orcidid>https://orcid.org/0000000288503627</orcidid><orcidid>https://orcid.org/0000000170161692</orcidid><orcidid>https://orcid.org/0000000324515482</orcidid><orcidid>https://orcid.org/000000024223103X</orcidid><orcidid>https://orcid.org/0000000226262872</orcidid><orcidid>https://orcid.org/0000000285329395</orcidid><orcidid>https://orcid.org/000000020387370X</orcidid><orcidid>https://orcid.org/0000000150608733</orcidid><orcidid>https://orcid.org/0000000265401484</orcidid><orcidid>https://orcid.org/0000000167531488</orcidid><orcidid>https://orcid.org/0000000260997565</orcidid><orcidid>https://orcid.org/0000000282622924</orcidid><orcidid>https://orcid.org/0000000322420244</orcidid><orcidid>https://orcid.org/0000000231680139</orcidid><orcidid>https://orcid.org/0000000176484142</orcidid><orcidid>https://orcid.org/0000000180185348</orcidid><orcidid>https://orcid.org/0000000153908563</orcidid><orcidid>https://orcid.org/000000027226836X</orcidid><orcidid>https://orcid.org/0000000182052506</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0004-6256
ispartof Astron.J, 2021-06, Vol.161 (6), p.267
issn 0004-6256
1538-3881
language eng
recordid cdi_proquest_journals_2528498418
source Institute of Physics Open Access Journal Titles
subjects Astronomy
ASTRONOMY AND ASTROPHYSICS
celestial objects catalog
Celestial objects catalogs
Classification
Infrastructure
Intrinsic variable stars
Light curve
Machine learning
Northern sky
Physics
Surveys
Training
Variable stars
title The ZTF Source Classification Project. I. Methods and Infrastructure
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T08%3A30%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_O3W&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20ZTF%20Source%20Classification%20Project.%20I.%20Methods%20and%20Infrastructure&rft.jtitle=Astron.J&rft.au=van%20Roestel,%20Jan&rft.aucorp=Lawrence%20Berkeley%20National%20Lab.%20(LBNL),%20Berkeley,%20CA%20(United%20States)&rft.date=2021-06-01&rft.volume=161&rft.issue=6&rft.spage=267&rft.pages=267-&rft.issn=0004-6256&rft.eissn=1538-3881&rft_id=info:doi/10.3847/1538-3881/abe853&rft_dat=%3Cproquest_O3W%3E2528498418%3C/proquest_O3W%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2528498418&rft_id=info:pmid/&rfr_iscdi=true