Numerical algorithm for the problem of the technological process of filtering low-concentrated suspensions
The paper presents a mathematical model in the form of a second-order nonlinear differential equation with initial and boundary conditions and a numerical method for solving the problem based on the finite-difference method of the technological process of filtration of low-concentration suspensions...
Gespeichert in:
Veröffentlicht in: | Journal of physics. Conference series 2021-04, Vol.1889 (2), p.22107 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | 22107 |
container_title | Journal of physics. Conference series |
container_volume | 1889 |
creator | Yu Palvanov, B Saidov, U Sharipov, M |
description | The paper presents a mathematical model in the form of a second-order nonlinear differential equation with initial and boundary conditions and a numerical method for solving the problem based on the finite-difference method of the technological process of filtration of low-concentration suspensions to determine the ranges of variation of the ion-exchange filter parameters, as well as the results of computational experiments. When developing a mathematical model, the following main filter parameters and physico-mechanical properties of solutions (liquids) were taken into account: filtration rate, rate of sedimentation of gel particles on the pores of the filter, filter porosity, filter layer thickness, kinetic coefficient, dynamic viscosity coefficient and outlet concentration of the suspension. The developed mathematical model and a numerical solution method allow determining the deposition rate of gel particles in the pores of the filter, the outlet concentration of the solution and changes in the concentration of the driving solution of the ion-exchange filter. |
doi_str_mv | 10.1088/1742-6596/1889/2/022107 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2528488135</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2528488135</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2327-d22b38db68362e1c27e27919a24000ec83b1c8918d0e861bac8cf334b8cbe1b23</originalsourceid><addsrcrecordid>eNo9kE9PwzAMxSMEEmPwGajEuTRxutY9ool_0gQXOEdN6m6d0mQkrRDfnpah-WJb7-nZ-jF2K_i94IiZKHNIi1VVZAKxyiDjAIKXZ2xxUs5PM-Ilu4pxz7mcqlyw_dvYU-hMbZPabn3ohl2ftD4kw46SQ_DaUp_49m8dyOyct377Z59EQzHOYtvZYQpx28T679R4Z8gNoR6oSeIYD-Ri5128ZhdtbSPd_Pcl-3x6_Fi_pJv359f1wyY1IKFMGwAtsdEFygJIGCgJykpUNeScczIotTBYCWw4YSF0bdC0UuYajSahQS7Z3TF3-vBrpDiovR-Dm04qWAHmiEKuJld5dJngYwzUqkPo-jr8KMHVDFbNyNSMT81gFagjWPkLL2Ftgw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2528488135</pqid></control><display><type>article</type><title>Numerical algorithm for the problem of the technological process of filtering low-concentrated suspensions</title><source>Institute of Physics Open Access Journal Titles</source><source>EZB-FREE-00999 freely available EZB journals</source><source>IOPscience extra</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Yu Palvanov, B ; Saidov, U ; Sharipov, M</creator><creatorcontrib>Yu Palvanov, B ; Saidov, U ; Sharipov, M</creatorcontrib><description>The paper presents a mathematical model in the form of a second-order nonlinear differential equation with initial and boundary conditions and a numerical method for solving the problem based on the finite-difference method of the technological process of filtration of low-concentration suspensions to determine the ranges of variation of the ion-exchange filter parameters, as well as the results of computational experiments. When developing a mathematical model, the following main filter parameters and physico-mechanical properties of solutions (liquids) were taken into account: filtration rate, rate of sedimentation of gel particles on the pores of the filter, filter porosity, filter layer thickness, kinetic coefficient, dynamic viscosity coefficient and outlet concentration of the suspension. The developed mathematical model and a numerical solution method allow determining the deposition rate of gel particles in the pores of the filter, the outlet concentration of the solution and changes in the concentration of the driving solution of the ion-exchange filter.</description><identifier>ISSN: 1742-6588</identifier><identifier>EISSN: 1742-6596</identifier><identifier>DOI: 10.1088/1742-6596/1889/2/022107</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Algorithms ; Boundary conditions ; Filtration ; Finite difference method ; Ion exchange ; Kinetic coefficients ; Mathematical models ; Mechanical properties ; Nonlinear differential equations ; Numerical analysis ; Numerical methods ; Parameters ; Physics ; Porosity ; Thickness</subject><ispartof>Journal of physics. Conference series, 2021-04, Vol.1889 (2), p.22107</ispartof><rights>2021. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2327-d22b38db68362e1c27e27919a24000ec83b1c8918d0e861bac8cf334b8cbe1b23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27928,27929</link.rule.ids></links><search><creatorcontrib>Yu Palvanov, B</creatorcontrib><creatorcontrib>Saidov, U</creatorcontrib><creatorcontrib>Sharipov, M</creatorcontrib><title>Numerical algorithm for the problem of the technological process of filtering low-concentrated suspensions</title><title>Journal of physics. Conference series</title><description>The paper presents a mathematical model in the form of a second-order nonlinear differential equation with initial and boundary conditions and a numerical method for solving the problem based on the finite-difference method of the technological process of filtration of low-concentration suspensions to determine the ranges of variation of the ion-exchange filter parameters, as well as the results of computational experiments. When developing a mathematical model, the following main filter parameters and physico-mechanical properties of solutions (liquids) were taken into account: filtration rate, rate of sedimentation of gel particles on the pores of the filter, filter porosity, filter layer thickness, kinetic coefficient, dynamic viscosity coefficient and outlet concentration of the suspension. The developed mathematical model and a numerical solution method allow determining the deposition rate of gel particles in the pores of the filter, the outlet concentration of the solution and changes in the concentration of the driving solution of the ion-exchange filter.</description><subject>Algorithms</subject><subject>Boundary conditions</subject><subject>Filtration</subject><subject>Finite difference method</subject><subject>Ion exchange</subject><subject>Kinetic coefficients</subject><subject>Mathematical models</subject><subject>Mechanical properties</subject><subject>Nonlinear differential equations</subject><subject>Numerical analysis</subject><subject>Numerical methods</subject><subject>Parameters</subject><subject>Physics</subject><subject>Porosity</subject><subject>Thickness</subject><issn>1742-6588</issn><issn>1742-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNo9kE9PwzAMxSMEEmPwGajEuTRxutY9ool_0gQXOEdN6m6d0mQkrRDfnpah-WJb7-nZ-jF2K_i94IiZKHNIi1VVZAKxyiDjAIKXZ2xxUs5PM-Ilu4pxz7mcqlyw_dvYU-hMbZPabn3ohl2ftD4kw46SQ_DaUp_49m8dyOyct377Z59EQzHOYtvZYQpx28T679R4Z8gNoR6oSeIYD-Ri5128ZhdtbSPd_Pcl-3x6_Fi_pJv359f1wyY1IKFMGwAtsdEFygJIGCgJykpUNeScczIotTBYCWw4YSF0bdC0UuYajSahQS7Z3TF3-vBrpDiovR-Dm04qWAHmiEKuJld5dJngYwzUqkPo-jr8KMHVDFbNyNSMT81gFagjWPkLL2Ftgw</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Yu Palvanov, B</creator><creator>Saidov, U</creator><creator>Sharipov, M</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20210401</creationdate><title>Numerical algorithm for the problem of the technological process of filtering low-concentrated suspensions</title><author>Yu Palvanov, B ; Saidov, U ; Sharipov, M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2327-d22b38db68362e1c27e27919a24000ec83b1c8918d0e861bac8cf334b8cbe1b23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Boundary conditions</topic><topic>Filtration</topic><topic>Finite difference method</topic><topic>Ion exchange</topic><topic>Kinetic coefficients</topic><topic>Mathematical models</topic><topic>Mechanical properties</topic><topic>Nonlinear differential equations</topic><topic>Numerical analysis</topic><topic>Numerical methods</topic><topic>Parameters</topic><topic>Physics</topic><topic>Porosity</topic><topic>Thickness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu Palvanov, B</creatorcontrib><creatorcontrib>Saidov, U</creatorcontrib><creatorcontrib>Sharipov, M</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of physics. Conference series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu Palvanov, B</au><au>Saidov, U</au><au>Sharipov, M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical algorithm for the problem of the technological process of filtering low-concentrated suspensions</atitle><jtitle>Journal of physics. Conference series</jtitle><date>2021-04-01</date><risdate>2021</risdate><volume>1889</volume><issue>2</issue><spage>22107</spage><pages>22107-</pages><issn>1742-6588</issn><eissn>1742-6596</eissn><abstract>The paper presents a mathematical model in the form of a second-order nonlinear differential equation with initial and boundary conditions and a numerical method for solving the problem based on the finite-difference method of the technological process of filtration of low-concentration suspensions to determine the ranges of variation of the ion-exchange filter parameters, as well as the results of computational experiments. When developing a mathematical model, the following main filter parameters and physico-mechanical properties of solutions (liquids) were taken into account: filtration rate, rate of sedimentation of gel particles on the pores of the filter, filter porosity, filter layer thickness, kinetic coefficient, dynamic viscosity coefficient and outlet concentration of the suspension. The developed mathematical model and a numerical solution method allow determining the deposition rate of gel particles in the pores of the filter, the outlet concentration of the solution and changes in the concentration of the driving solution of the ion-exchange filter.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1742-6596/1889/2/022107</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1742-6588 |
ispartof | Journal of physics. Conference series, 2021-04, Vol.1889 (2), p.22107 |
issn | 1742-6588 1742-6596 |
language | eng |
recordid | cdi_proquest_journals_2528488135 |
source | Institute of Physics Open Access Journal Titles; EZB-FREE-00999 freely available EZB journals; IOPscience extra; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Algorithms Boundary conditions Filtration Finite difference method Ion exchange Kinetic coefficients Mathematical models Mechanical properties Nonlinear differential equations Numerical analysis Numerical methods Parameters Physics Porosity Thickness |
title | Numerical algorithm for the problem of the technological process of filtering low-concentrated suspensions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T14%3A02%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20algorithm%20for%20the%20problem%20of%20the%20technological%20process%20of%20filtering%20low-concentrated%20suspensions&rft.jtitle=Journal%20of%20physics.%20Conference%20series&rft.au=Yu%20Palvanov,%20B&rft.date=2021-04-01&rft.volume=1889&rft.issue=2&rft.spage=22107&rft.pages=22107-&rft.issn=1742-6588&rft.eissn=1742-6596&rft_id=info:doi/10.1088/1742-6596/1889/2/022107&rft_dat=%3Cproquest_cross%3E2528488135%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2528488135&rft_id=info:pmid/&rfr_iscdi=true |