Numerical algorithm for the problem of the technological process of filtering low-concentrated suspensions

The paper presents a mathematical model in the form of a second-order nonlinear differential equation with initial and boundary conditions and a numerical method for solving the problem based on the finite-difference method of the technological process of filtration of low-concentration suspensions...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. Conference series 2021-04, Vol.1889 (2), p.22107
Hauptverfasser: Yu Palvanov, B, Saidov, U, Sharipov, M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page 22107
container_title Journal of physics. Conference series
container_volume 1889
creator Yu Palvanov, B
Saidov, U
Sharipov, M
description The paper presents a mathematical model in the form of a second-order nonlinear differential equation with initial and boundary conditions and a numerical method for solving the problem based on the finite-difference method of the technological process of filtration of low-concentration suspensions to determine the ranges of variation of the ion-exchange filter parameters, as well as the results of computational experiments. When developing a mathematical model, the following main filter parameters and physico-mechanical properties of solutions (liquids) were taken into account: filtration rate, rate of sedimentation of gel particles on the pores of the filter, filter porosity, filter layer thickness, kinetic coefficient, dynamic viscosity coefficient and outlet concentration of the suspension. The developed mathematical model and a numerical solution method allow determining the deposition rate of gel particles in the pores of the filter, the outlet concentration of the solution and changes in the concentration of the driving solution of the ion-exchange filter.
doi_str_mv 10.1088/1742-6596/1889/2/022107
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2528488135</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2528488135</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2327-d22b38db68362e1c27e27919a24000ec83b1c8918d0e861bac8cf334b8cbe1b23</originalsourceid><addsrcrecordid>eNo9kE9PwzAMxSMEEmPwGajEuTRxutY9ool_0gQXOEdN6m6d0mQkrRDfnpah-WJb7-nZ-jF2K_i94IiZKHNIi1VVZAKxyiDjAIKXZ2xxUs5PM-Ilu4pxz7mcqlyw_dvYU-hMbZPabn3ohl2ftD4kw46SQ_DaUp_49m8dyOyct377Z59EQzHOYtvZYQpx28T679R4Z8gNoR6oSeIYD-Ri5128ZhdtbSPd_Pcl-3x6_Fi_pJv359f1wyY1IKFMGwAtsdEFygJIGCgJykpUNeScczIotTBYCWw4YSF0bdC0UuYajSahQS7Z3TF3-vBrpDiovR-Dm04qWAHmiEKuJld5dJngYwzUqkPo-jr8KMHVDFbNyNSMT81gFagjWPkLL2Ftgw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2528488135</pqid></control><display><type>article</type><title>Numerical algorithm for the problem of the technological process of filtering low-concentrated suspensions</title><source>Institute of Physics Open Access Journal Titles</source><source>EZB-FREE-00999 freely available EZB journals</source><source>IOPscience extra</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Yu Palvanov, B ; Saidov, U ; Sharipov, M</creator><creatorcontrib>Yu Palvanov, B ; Saidov, U ; Sharipov, M</creatorcontrib><description>The paper presents a mathematical model in the form of a second-order nonlinear differential equation with initial and boundary conditions and a numerical method for solving the problem based on the finite-difference method of the technological process of filtration of low-concentration suspensions to determine the ranges of variation of the ion-exchange filter parameters, as well as the results of computational experiments. When developing a mathematical model, the following main filter parameters and physico-mechanical properties of solutions (liquids) were taken into account: filtration rate, rate of sedimentation of gel particles on the pores of the filter, filter porosity, filter layer thickness, kinetic coefficient, dynamic viscosity coefficient and outlet concentration of the suspension. The developed mathematical model and a numerical solution method allow determining the deposition rate of gel particles in the pores of the filter, the outlet concentration of the solution and changes in the concentration of the driving solution of the ion-exchange filter.</description><identifier>ISSN: 1742-6588</identifier><identifier>EISSN: 1742-6596</identifier><identifier>DOI: 10.1088/1742-6596/1889/2/022107</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Algorithms ; Boundary conditions ; Filtration ; Finite difference method ; Ion exchange ; Kinetic coefficients ; Mathematical models ; Mechanical properties ; Nonlinear differential equations ; Numerical analysis ; Numerical methods ; Parameters ; Physics ; Porosity ; Thickness</subject><ispartof>Journal of physics. Conference series, 2021-04, Vol.1889 (2), p.22107</ispartof><rights>2021. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2327-d22b38db68362e1c27e27919a24000ec83b1c8918d0e861bac8cf334b8cbe1b23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27928,27929</link.rule.ids></links><search><creatorcontrib>Yu Palvanov, B</creatorcontrib><creatorcontrib>Saidov, U</creatorcontrib><creatorcontrib>Sharipov, M</creatorcontrib><title>Numerical algorithm for the problem of the technological process of filtering low-concentrated suspensions</title><title>Journal of physics. Conference series</title><description>The paper presents a mathematical model in the form of a second-order nonlinear differential equation with initial and boundary conditions and a numerical method for solving the problem based on the finite-difference method of the technological process of filtration of low-concentration suspensions to determine the ranges of variation of the ion-exchange filter parameters, as well as the results of computational experiments. When developing a mathematical model, the following main filter parameters and physico-mechanical properties of solutions (liquids) were taken into account: filtration rate, rate of sedimentation of gel particles on the pores of the filter, filter porosity, filter layer thickness, kinetic coefficient, dynamic viscosity coefficient and outlet concentration of the suspension. The developed mathematical model and a numerical solution method allow determining the deposition rate of gel particles in the pores of the filter, the outlet concentration of the solution and changes in the concentration of the driving solution of the ion-exchange filter.</description><subject>Algorithms</subject><subject>Boundary conditions</subject><subject>Filtration</subject><subject>Finite difference method</subject><subject>Ion exchange</subject><subject>Kinetic coefficients</subject><subject>Mathematical models</subject><subject>Mechanical properties</subject><subject>Nonlinear differential equations</subject><subject>Numerical analysis</subject><subject>Numerical methods</subject><subject>Parameters</subject><subject>Physics</subject><subject>Porosity</subject><subject>Thickness</subject><issn>1742-6588</issn><issn>1742-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNo9kE9PwzAMxSMEEmPwGajEuTRxutY9ool_0gQXOEdN6m6d0mQkrRDfnpah-WJb7-nZ-jF2K_i94IiZKHNIi1VVZAKxyiDjAIKXZ2xxUs5PM-Ilu4pxz7mcqlyw_dvYU-hMbZPabn3ohl2ftD4kw46SQ_DaUp_49m8dyOyct377Z59EQzHOYtvZYQpx28T679R4Z8gNoR6oSeIYD-Ri5128ZhdtbSPd_Pcl-3x6_Fi_pJv359f1wyY1IKFMGwAtsdEFygJIGCgJykpUNeScczIotTBYCWw4YSF0bdC0UuYajSahQS7Z3TF3-vBrpDiovR-Dm04qWAHmiEKuJld5dJngYwzUqkPo-jr8KMHVDFbNyNSMT81gFagjWPkLL2Ftgw</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Yu Palvanov, B</creator><creator>Saidov, U</creator><creator>Sharipov, M</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20210401</creationdate><title>Numerical algorithm for the problem of the technological process of filtering low-concentrated suspensions</title><author>Yu Palvanov, B ; Saidov, U ; Sharipov, M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2327-d22b38db68362e1c27e27919a24000ec83b1c8918d0e861bac8cf334b8cbe1b23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Boundary conditions</topic><topic>Filtration</topic><topic>Finite difference method</topic><topic>Ion exchange</topic><topic>Kinetic coefficients</topic><topic>Mathematical models</topic><topic>Mechanical properties</topic><topic>Nonlinear differential equations</topic><topic>Numerical analysis</topic><topic>Numerical methods</topic><topic>Parameters</topic><topic>Physics</topic><topic>Porosity</topic><topic>Thickness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu Palvanov, B</creatorcontrib><creatorcontrib>Saidov, U</creatorcontrib><creatorcontrib>Sharipov, M</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of physics. Conference series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu Palvanov, B</au><au>Saidov, U</au><au>Sharipov, M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical algorithm for the problem of the technological process of filtering low-concentrated suspensions</atitle><jtitle>Journal of physics. Conference series</jtitle><date>2021-04-01</date><risdate>2021</risdate><volume>1889</volume><issue>2</issue><spage>22107</spage><pages>22107-</pages><issn>1742-6588</issn><eissn>1742-6596</eissn><abstract>The paper presents a mathematical model in the form of a second-order nonlinear differential equation with initial and boundary conditions and a numerical method for solving the problem based on the finite-difference method of the technological process of filtration of low-concentration suspensions to determine the ranges of variation of the ion-exchange filter parameters, as well as the results of computational experiments. When developing a mathematical model, the following main filter parameters and physico-mechanical properties of solutions (liquids) were taken into account: filtration rate, rate of sedimentation of gel particles on the pores of the filter, filter porosity, filter layer thickness, kinetic coefficient, dynamic viscosity coefficient and outlet concentration of the suspension. The developed mathematical model and a numerical solution method allow determining the deposition rate of gel particles in the pores of the filter, the outlet concentration of the solution and changes in the concentration of the driving solution of the ion-exchange filter.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1742-6596/1889/2/022107</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1742-6588
ispartof Journal of physics. Conference series, 2021-04, Vol.1889 (2), p.22107
issn 1742-6588
1742-6596
language eng
recordid cdi_proquest_journals_2528488135
source Institute of Physics Open Access Journal Titles; EZB-FREE-00999 freely available EZB journals; IOPscience extra; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Algorithms
Boundary conditions
Filtration
Finite difference method
Ion exchange
Kinetic coefficients
Mathematical models
Mechanical properties
Nonlinear differential equations
Numerical analysis
Numerical methods
Parameters
Physics
Porosity
Thickness
title Numerical algorithm for the problem of the technological process of filtering low-concentrated suspensions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T14%3A02%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20algorithm%20for%20the%20problem%20of%20the%20technological%20process%20of%20filtering%20low-concentrated%20suspensions&rft.jtitle=Journal%20of%20physics.%20Conference%20series&rft.au=Yu%20Palvanov,%20B&rft.date=2021-04-01&rft.volume=1889&rft.issue=2&rft.spage=22107&rft.pages=22107-&rft.issn=1742-6588&rft.eissn=1742-6596&rft_id=info:doi/10.1088/1742-6596/1889/2/022107&rft_dat=%3Cproquest_cross%3E2528488135%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2528488135&rft_id=info:pmid/&rfr_iscdi=true