Recent State-of-the-Art of Antiscalant-Driven Scale Inhibition Theory (Review)

Application of antiscalants is a worldwide practice for industrial scale formation mitigation. The range of reagents is constantly expanding, and new scale inhibitors are permanently elaborated, including biodegradable ones. An antiscalant-driven scale inhibition theory has formed in the mid-twentie...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Thermal engineering 2021, Vol.68 (5), p.370-380
Hauptverfasser: Oshchepkov, M. S., Rudakova, G. Ya, Tkachenko, S. V., Larchenko, V. E., Popov, K. I., Tusheva, M. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 380
container_issue 5
container_start_page 370
container_title Thermal engineering
container_volume 68
creator Oshchepkov, M. S.
Rudakova, G. Ya
Tkachenko, S. V.
Larchenko, V. E.
Popov, K. I.
Tusheva, M. A.
description Application of antiscalants is a worldwide practice for industrial scale formation mitigation. The range of reagents is constantly expanding, and new scale inhibitors are permanently elaborated, including biodegradable ones. An antiscalant-driven scale inhibition theory has formed in the mid-twentieth century, and is up to date with some minor refinements. However, in recent years, the classical views have been increasingly criticized on the grounds of such modern methods as dynamic light scattering, particle counter technique and fluorescent visualization of antiscalant location in industrial and model system’s deposits. These methods provide a better understanding of scale inhibition mechanisms. In a present review the major mechanisms of scale inhibition are critically examined, and a hypothesis on the dominating role of solid impurities interaction with antiscalant is formulated. According to this hypothesis, the scale crystals nucleation in the bulk aqueous medium is a heterogeneous process, catalyzed by foreign solid nano/microdust particles, serving as crystallization templates (seeds). Thus, an antiscalant competes for these templates with the scale forming ions, blocks the background seeds, and reduces therefore the number of potential crystallization centers. In this way, the scale inhibitor slows down the scale formation due to the foreign seeds isolation, but not via direct interaction with the nuclei of a sparingly soluble salt.
doi_str_mv 10.1134/S0040601521040054
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2528474630</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2528474630</sourcerecordid><originalsourceid>FETCH-LOGICAL-c283t-20582318f2ca8f8c2c7800f3125f088659eddb499ad8b964069d16aa6a01a32c3</originalsourceid><addsrcrecordid>eNp1UMtKAzEUDaJgrX6Au4AbXUTznGaWpb4KRaFT10OaSWxKTWqSVvr3plRwIa7uvZzH5RwALgm-JYTxuwZjjitMBCVlwYIfgR4RQqCKYXIMensY7fFTcJbSspycE9EDL1Ojjc-wySobFCzKC4OGMcNg4dBnl7RaKZ_RfXRb42FTTgPHfuHmLrvg4WxhQtzB66nZOvN1cw5OrFolc_Ez--Dt8WE2ekaT16fxaDhBmkqWEcVCUkakpVpJKzXVA4mxZYQKi6WsRG26bs7rWnVyXlclWd2RSqlKYaIY1awPrg6-6xg-Nybldhk20ZeXLRVU8gEvuQuLHFg6hpSise06ug8Vdy3B7b629k9tRUMPmlS4_t3EX-f_Rd-YHmwz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2528474630</pqid></control><display><type>article</type><title>Recent State-of-the-Art of Antiscalant-Driven Scale Inhibition Theory (Review)</title><source>SpringerLink Journals - AutoHoldings</source><creator>Oshchepkov, M. S. ; Rudakova, G. Ya ; Tkachenko, S. V. ; Larchenko, V. E. ; Popov, K. I. ; Tusheva, M. A.</creator><creatorcontrib>Oshchepkov, M. S. ; Rudakova, G. Ya ; Tkachenko, S. V. ; Larchenko, V. E. ; Popov, K. I. ; Tusheva, M. A.</creatorcontrib><description>Application of antiscalants is a worldwide practice for industrial scale formation mitigation. The range of reagents is constantly expanding, and new scale inhibitors are permanently elaborated, including biodegradable ones. An antiscalant-driven scale inhibition theory has formed in the mid-twentieth century, and is up to date with some minor refinements. However, in recent years, the classical views have been increasingly criticized on the grounds of such modern methods as dynamic light scattering, particle counter technique and fluorescent visualization of antiscalant location in industrial and model system’s deposits. These methods provide a better understanding of scale inhibition mechanisms. In a present review the major mechanisms of scale inhibition are critically examined, and a hypothesis on the dominating role of solid impurities interaction with antiscalant is formulated. According to this hypothesis, the scale crystals nucleation in the bulk aqueous medium is a heterogeneous process, catalyzed by foreign solid nano/microdust particles, serving as crystallization templates (seeds). Thus, an antiscalant competes for these templates with the scale forming ions, blocks the background seeds, and reduces therefore the number of potential crystallization centers. In this way, the scale inhibitor slows down the scale formation due to the foreign seeds isolation, but not via direct interaction with the nuclei of a sparingly soluble salt.</description><identifier>ISSN: 0040-6015</identifier><identifier>EISSN: 1555-6301</identifier><identifier>DOI: 10.1134/S0040601521040054</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Aqueous solutions ; Biodegradability ; Crystallization ; Engineering ; Engineering Thermodynamics ; Fluorescence ; Heat and Mass Transfer ; Hypotheses ; Nucleation ; Photon correlation spectroscopy ; Radiation counters ; Reagents ; Scale formation ; Water Treatment and Water Chemistry</subject><ispartof>Thermal engineering, 2021, Vol.68 (5), p.370-380</ispartof><rights>Pleiades Publishing, Inc. 2021. ISSN 0040-6015, Thermal Engineering, 2021, Vol. 68, No. 5, pp. 370–380. © Pleiades Publishing, Inc., 2021. Russian Text © The Author(s), 2021, published in Teploenergetika.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c283t-20582318f2ca8f8c2c7800f3125f088659eddb499ad8b964069d16aa6a01a32c3</citedby><cites>FETCH-LOGICAL-c283t-20582318f2ca8f8c2c7800f3125f088659eddb499ad8b964069d16aa6a01a32c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0040601521040054$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0040601521040054$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Oshchepkov, M. S.</creatorcontrib><creatorcontrib>Rudakova, G. Ya</creatorcontrib><creatorcontrib>Tkachenko, S. V.</creatorcontrib><creatorcontrib>Larchenko, V. E.</creatorcontrib><creatorcontrib>Popov, K. I.</creatorcontrib><creatorcontrib>Tusheva, M. A.</creatorcontrib><title>Recent State-of-the-Art of Antiscalant-Driven Scale Inhibition Theory (Review)</title><title>Thermal engineering</title><addtitle>Therm. Eng</addtitle><description>Application of antiscalants is a worldwide practice for industrial scale formation mitigation. The range of reagents is constantly expanding, and new scale inhibitors are permanently elaborated, including biodegradable ones. An antiscalant-driven scale inhibition theory has formed in the mid-twentieth century, and is up to date with some minor refinements. However, in recent years, the classical views have been increasingly criticized on the grounds of such modern methods as dynamic light scattering, particle counter technique and fluorescent visualization of antiscalant location in industrial and model system’s deposits. These methods provide a better understanding of scale inhibition mechanisms. In a present review the major mechanisms of scale inhibition are critically examined, and a hypothesis on the dominating role of solid impurities interaction with antiscalant is formulated. According to this hypothesis, the scale crystals nucleation in the bulk aqueous medium is a heterogeneous process, catalyzed by foreign solid nano/microdust particles, serving as crystallization templates (seeds). Thus, an antiscalant competes for these templates with the scale forming ions, blocks the background seeds, and reduces therefore the number of potential crystallization centers. In this way, the scale inhibitor slows down the scale formation due to the foreign seeds isolation, but not via direct interaction with the nuclei of a sparingly soluble salt.</description><subject>Aqueous solutions</subject><subject>Biodegradability</subject><subject>Crystallization</subject><subject>Engineering</subject><subject>Engineering Thermodynamics</subject><subject>Fluorescence</subject><subject>Heat and Mass Transfer</subject><subject>Hypotheses</subject><subject>Nucleation</subject><subject>Photon correlation spectroscopy</subject><subject>Radiation counters</subject><subject>Reagents</subject><subject>Scale formation</subject><subject>Water Treatment and Water Chemistry</subject><issn>0040-6015</issn><issn>1555-6301</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1UMtKAzEUDaJgrX6Au4AbXUTznGaWpb4KRaFT10OaSWxKTWqSVvr3plRwIa7uvZzH5RwALgm-JYTxuwZjjitMBCVlwYIfgR4RQqCKYXIMensY7fFTcJbSspycE9EDL1Ojjc-wySobFCzKC4OGMcNg4dBnl7RaKZ_RfXRb42FTTgPHfuHmLrvg4WxhQtzB66nZOvN1cw5OrFolc_Ez--Dt8WE2ekaT16fxaDhBmkqWEcVCUkakpVpJKzXVA4mxZYQKi6WsRG26bs7rWnVyXlclWd2RSqlKYaIY1awPrg6-6xg-Nybldhk20ZeXLRVU8gEvuQuLHFg6hpSise06ug8Vdy3B7b629k9tRUMPmlS4_t3EX-f_Rd-YHmwz</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Oshchepkov, M. S.</creator><creator>Rudakova, G. Ya</creator><creator>Tkachenko, S. V.</creator><creator>Larchenko, V. E.</creator><creator>Popov, K. I.</creator><creator>Tusheva, M. A.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2021</creationdate><title>Recent State-of-the-Art of Antiscalant-Driven Scale Inhibition Theory (Review)</title><author>Oshchepkov, M. S. ; Rudakova, G. Ya ; Tkachenko, S. V. ; Larchenko, V. E. ; Popov, K. I. ; Tusheva, M. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c283t-20582318f2ca8f8c2c7800f3125f088659eddb499ad8b964069d16aa6a01a32c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aqueous solutions</topic><topic>Biodegradability</topic><topic>Crystallization</topic><topic>Engineering</topic><topic>Engineering Thermodynamics</topic><topic>Fluorescence</topic><topic>Heat and Mass Transfer</topic><topic>Hypotheses</topic><topic>Nucleation</topic><topic>Photon correlation spectroscopy</topic><topic>Radiation counters</topic><topic>Reagents</topic><topic>Scale formation</topic><topic>Water Treatment and Water Chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Oshchepkov, M. S.</creatorcontrib><creatorcontrib>Rudakova, G. Ya</creatorcontrib><creatorcontrib>Tkachenko, S. V.</creatorcontrib><creatorcontrib>Larchenko, V. E.</creatorcontrib><creatorcontrib>Popov, K. I.</creatorcontrib><creatorcontrib>Tusheva, M. A.</creatorcontrib><collection>CrossRef</collection><jtitle>Thermal engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Oshchepkov, M. S.</au><au>Rudakova, G. Ya</au><au>Tkachenko, S. V.</au><au>Larchenko, V. E.</au><au>Popov, K. I.</au><au>Tusheva, M. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Recent State-of-the-Art of Antiscalant-Driven Scale Inhibition Theory (Review)</atitle><jtitle>Thermal engineering</jtitle><stitle>Therm. Eng</stitle><date>2021</date><risdate>2021</risdate><volume>68</volume><issue>5</issue><spage>370</spage><epage>380</epage><pages>370-380</pages><issn>0040-6015</issn><eissn>1555-6301</eissn><abstract>Application of antiscalants is a worldwide practice for industrial scale formation mitigation. The range of reagents is constantly expanding, and new scale inhibitors are permanently elaborated, including biodegradable ones. An antiscalant-driven scale inhibition theory has formed in the mid-twentieth century, and is up to date with some minor refinements. However, in recent years, the classical views have been increasingly criticized on the grounds of such modern methods as dynamic light scattering, particle counter technique and fluorescent visualization of antiscalant location in industrial and model system’s deposits. These methods provide a better understanding of scale inhibition mechanisms. In a present review the major mechanisms of scale inhibition are critically examined, and a hypothesis on the dominating role of solid impurities interaction with antiscalant is formulated. According to this hypothesis, the scale crystals nucleation in the bulk aqueous medium is a heterogeneous process, catalyzed by foreign solid nano/microdust particles, serving as crystallization templates (seeds). Thus, an antiscalant competes for these templates with the scale forming ions, blocks the background seeds, and reduces therefore the number of potential crystallization centers. In this way, the scale inhibitor slows down the scale formation due to the foreign seeds isolation, but not via direct interaction with the nuclei of a sparingly soluble salt.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0040601521040054</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0040-6015
ispartof Thermal engineering, 2021, Vol.68 (5), p.370-380
issn 0040-6015
1555-6301
language eng
recordid cdi_proquest_journals_2528474630
source SpringerLink Journals - AutoHoldings
subjects Aqueous solutions
Biodegradability
Crystallization
Engineering
Engineering Thermodynamics
Fluorescence
Heat and Mass Transfer
Hypotheses
Nucleation
Photon correlation spectroscopy
Radiation counters
Reagents
Scale formation
Water Treatment and Water Chemistry
title Recent State-of-the-Art of Antiscalant-Driven Scale Inhibition Theory (Review)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T05%3A10%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Recent%20State-of-the-Art%20of%20Antiscalant-Driven%20Scale%20Inhibition%20Theory%20(Review)&rft.jtitle=Thermal%20engineering&rft.au=Oshchepkov,%20M.%20S.&rft.date=2021&rft.volume=68&rft.issue=5&rft.spage=370&rft.epage=380&rft.pages=370-380&rft.issn=0040-6015&rft.eissn=1555-6301&rft_id=info:doi/10.1134/S0040601521040054&rft_dat=%3Cproquest_cross%3E2528474630%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2528474630&rft_id=info:pmid/&rfr_iscdi=true