Argon pressure dependent optoelectronic characteristics of amorphous tin oxide thin films obtained by non-reactive RF sputtering process
In this work, amorphous tin oxide thin films were deposited by non-reactive radio frequency magnetron sputtering. A ceramic SnO 2 target was used, while different working pressures were employed. The target to substrate distance was fixed to 17 cm, and the substrate was not intentionally heated. The...
Gespeichert in:
Veröffentlicht in: | Journal of materials science. Materials in electronics 2021-05, Vol.32 (9), p.12308-12317 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12317 |
---|---|
container_issue | 9 |
container_start_page | 12308 |
container_title | Journal of materials science. Materials in electronics |
container_volume | 32 |
creator | Ziani, N. Galca, A. C. Belkaid, M. S. Stavarache, I. |
description | In this work, amorphous tin oxide thin films were deposited by non-reactive radio frequency magnetron sputtering. A ceramic
SnO
2
target was used, while different working pressures were employed. The target to substrate distance was fixed to 17 cm, and the substrate was not intentionally heated. The properties of
SnO
2
(thickness, refractive index dispersion, optical band gap, resistivity, free carriers concentration, carriers mobility, carriers majority type and their scattering time) have been inferred from spectroscopic ellipsometry, conventional UV-Vis spectroscopy and specific Hall electrical measurements. Thickness and refractive index are slightly dependent on the deposition conditions, while the optical band gap, free carriers concentration and their mobilities are changing from sample to sample. The evolution of the optical band gap and carriers concentration is correlated to the active defects concentration. Amorphous
SnO
2
films grown at 0.4 Pa have the lowest resistivity of
0.86
Ω
cm
, a carrier concentration of
1.05
×
10
18
cm
-
3
, and a Hall mobility of
6.8
cm
2
/ Vs. The average optical transmittance in visible spectrum is 76%. |
doi_str_mv | 10.1007/s10854-021-05861-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2528311484</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2528311484</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-a5708462508946373fb8732289045114a8bf9009b46f9856e4147c36909e06093</originalsourceid><addsrcrecordid>eNp9kMtqHDEQRUVwIBPbP-CVwGslpVe3tDTGj4DBEBLITnRrqj0yM1JbUhv7D_zZ0WQC3nmlWtx7DrqEnHH4xgH674WD0YqB4Ay06TgTn8iK614yZcSfI7ICq3umtBBfyNdSHgGgU9KsyNtFfkiRzhlLWTLSNc4Y1xgrTXNNuEVfc4rBU78Z8uAr5lBq8IWmiQ67lOdNWgqtIdL0EtZI66adU9juWmKsQ4i4puMrjSmyjK0fnpH-vKZlXuqeFR-aOvkmPyGfp2Fb8PT_e0x-X1_9urxld_c3Py4v7piX3FY26B6M6oQGY1UnezmNppdCGAtKc64GM04WwI6qm6zRHSquei87CxahAyuPyfmB27xPC5bqHtOSY1M6oYWRjWFUS4lDyudUSsbJzTnshvzqOLj94u6wuGuLu3-LO9FK8lAq8_5nmN_RH7T-AmlHhQE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2528311484</pqid></control><display><type>article</type><title>Argon pressure dependent optoelectronic characteristics of amorphous tin oxide thin films obtained by non-reactive RF sputtering process</title><source>SpringerLink Journals - AutoHoldings</source><creator>Ziani, N. ; Galca, A. C. ; Belkaid, M. S. ; Stavarache, I.</creator><creatorcontrib>Ziani, N. ; Galca, A. C. ; Belkaid, M. S. ; Stavarache, I.</creatorcontrib><description>In this work, amorphous tin oxide thin films were deposited by non-reactive radio frequency magnetron sputtering. A ceramic
SnO
2
target was used, while different working pressures were employed. The target to substrate distance was fixed to 17 cm, and the substrate was not intentionally heated. The properties of
SnO
2
(thickness, refractive index dispersion, optical band gap, resistivity, free carriers concentration, carriers mobility, carriers majority type and their scattering time) have been inferred from spectroscopic ellipsometry, conventional UV-Vis spectroscopy and specific Hall electrical measurements. Thickness and refractive index are slightly dependent on the deposition conditions, while the optical band gap, free carriers concentration and their mobilities are changing from sample to sample. The evolution of the optical band gap and carriers concentration is correlated to the active defects concentration. Amorphous
SnO
2
films grown at 0.4 Pa have the lowest resistivity of
0.86
Ω
cm
, a carrier concentration of
1.05
×
10
18
cm
-
3
, and a Hall mobility of
6.8
cm
2
/ Vs. The average optical transmittance in visible spectrum is 76%.</description><identifier>ISSN: 0957-4522</identifier><identifier>EISSN: 1573-482X</identifier><identifier>DOI: 10.1007/s10854-021-05861-2</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Argon ; Carrier density ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Electrical measurement ; Electrical resistivity ; Electron mobility ; Energy gap ; Hall effect ; Magnetron sputtering ; Materials Science ; Optical and Electronic Materials ; Optical properties ; Optoelectronics ; Pressure dependence ; Refractivity ; Spectroellipsometry ; Substrates ; Thickness measurement ; Thin films ; Tin dioxide ; Tin oxides ; Visible spectrum</subject><ispartof>Journal of materials science. Materials in electronics, 2021-05, Vol.32 (9), p.12308-12317</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-a5708462508946373fb8732289045114a8bf9009b46f9856e4147c36909e06093</citedby><cites>FETCH-LOGICAL-c319t-a5708462508946373fb8732289045114a8bf9009b46f9856e4147c36909e06093</cites><orcidid>0000-0002-7098-0126</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10854-021-05861-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10854-021-05861-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids></links><search><creatorcontrib>Ziani, N.</creatorcontrib><creatorcontrib>Galca, A. C.</creatorcontrib><creatorcontrib>Belkaid, M. S.</creatorcontrib><creatorcontrib>Stavarache, I.</creatorcontrib><title>Argon pressure dependent optoelectronic characteristics of amorphous tin oxide thin films obtained by non-reactive RF sputtering process</title><title>Journal of materials science. Materials in electronics</title><addtitle>J Mater Sci: Mater Electron</addtitle><description>In this work, amorphous tin oxide thin films were deposited by non-reactive radio frequency magnetron sputtering. A ceramic
SnO
2
target was used, while different working pressures were employed. The target to substrate distance was fixed to 17 cm, and the substrate was not intentionally heated. The properties of
SnO
2
(thickness, refractive index dispersion, optical band gap, resistivity, free carriers concentration, carriers mobility, carriers majority type and their scattering time) have been inferred from spectroscopic ellipsometry, conventional UV-Vis spectroscopy and specific Hall electrical measurements. Thickness and refractive index are slightly dependent on the deposition conditions, while the optical band gap, free carriers concentration and their mobilities are changing from sample to sample. The evolution of the optical band gap and carriers concentration is correlated to the active defects concentration. Amorphous
SnO
2
films grown at 0.4 Pa have the lowest resistivity of
0.86
Ω
cm
, a carrier concentration of
1.05
×
10
18
cm
-
3
, and a Hall mobility of
6.8
cm
2
/ Vs. The average optical transmittance in visible spectrum is 76%.</description><subject>Argon</subject><subject>Carrier density</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Electrical measurement</subject><subject>Electrical resistivity</subject><subject>Electron mobility</subject><subject>Energy gap</subject><subject>Hall effect</subject><subject>Magnetron sputtering</subject><subject>Materials Science</subject><subject>Optical and Electronic Materials</subject><subject>Optical properties</subject><subject>Optoelectronics</subject><subject>Pressure dependence</subject><subject>Refractivity</subject><subject>Spectroellipsometry</subject><subject>Substrates</subject><subject>Thickness measurement</subject><subject>Thin films</subject><subject>Tin dioxide</subject><subject>Tin oxides</subject><subject>Visible spectrum</subject><issn>0957-4522</issn><issn>1573-482X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kMtqHDEQRUVwIBPbP-CVwGslpVe3tDTGj4DBEBLITnRrqj0yM1JbUhv7D_zZ0WQC3nmlWtx7DrqEnHH4xgH674WD0YqB4Ay06TgTn8iK614yZcSfI7ICq3umtBBfyNdSHgGgU9KsyNtFfkiRzhlLWTLSNc4Y1xgrTXNNuEVfc4rBU78Z8uAr5lBq8IWmiQ67lOdNWgqtIdL0EtZI66adU9juWmKsQ4i4puMrjSmyjK0fnpH-vKZlXuqeFR-aOvkmPyGfp2Fb8PT_e0x-X1_9urxld_c3Py4v7piX3FY26B6M6oQGY1UnezmNppdCGAtKc64GM04WwI6qm6zRHSquei87CxahAyuPyfmB27xPC5bqHtOSY1M6oYWRjWFUS4lDyudUSsbJzTnshvzqOLj94u6wuGuLu3-LO9FK8lAq8_5nmN_RH7T-AmlHhQE</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Ziani, N.</creator><creator>Galca, A. C.</creator><creator>Belkaid, M. S.</creator><creator>Stavarache, I.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0002-7098-0126</orcidid></search><sort><creationdate>20210501</creationdate><title>Argon pressure dependent optoelectronic characteristics of amorphous tin oxide thin films obtained by non-reactive RF sputtering process</title><author>Ziani, N. ; Galca, A. C. ; Belkaid, M. S. ; Stavarache, I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-a5708462508946373fb8732289045114a8bf9009b46f9856e4147c36909e06093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Argon</topic><topic>Carrier density</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Electrical measurement</topic><topic>Electrical resistivity</topic><topic>Electron mobility</topic><topic>Energy gap</topic><topic>Hall effect</topic><topic>Magnetron sputtering</topic><topic>Materials Science</topic><topic>Optical and Electronic Materials</topic><topic>Optical properties</topic><topic>Optoelectronics</topic><topic>Pressure dependence</topic><topic>Refractivity</topic><topic>Spectroellipsometry</topic><topic>Substrates</topic><topic>Thickness measurement</topic><topic>Thin films</topic><topic>Tin dioxide</topic><topic>Tin oxides</topic><topic>Visible spectrum</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ziani, N.</creatorcontrib><creatorcontrib>Galca, A. C.</creatorcontrib><creatorcontrib>Belkaid, M. S.</creatorcontrib><creatorcontrib>Stavarache, I.</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Journal of materials science. Materials in electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ziani, N.</au><au>Galca, A. C.</au><au>Belkaid, M. S.</au><au>Stavarache, I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Argon pressure dependent optoelectronic characteristics of amorphous tin oxide thin films obtained by non-reactive RF sputtering process</atitle><jtitle>Journal of materials science. Materials in electronics</jtitle><stitle>J Mater Sci: Mater Electron</stitle><date>2021-05-01</date><risdate>2021</risdate><volume>32</volume><issue>9</issue><spage>12308</spage><epage>12317</epage><pages>12308-12317</pages><issn>0957-4522</issn><eissn>1573-482X</eissn><abstract>In this work, amorphous tin oxide thin films were deposited by non-reactive radio frequency magnetron sputtering. A ceramic
SnO
2
target was used, while different working pressures were employed. The target to substrate distance was fixed to 17 cm, and the substrate was not intentionally heated. The properties of
SnO
2
(thickness, refractive index dispersion, optical band gap, resistivity, free carriers concentration, carriers mobility, carriers majority type and their scattering time) have been inferred from spectroscopic ellipsometry, conventional UV-Vis spectroscopy and specific Hall electrical measurements. Thickness and refractive index are slightly dependent on the deposition conditions, while the optical band gap, free carriers concentration and their mobilities are changing from sample to sample. The evolution of the optical band gap and carriers concentration is correlated to the active defects concentration. Amorphous
SnO
2
films grown at 0.4 Pa have the lowest resistivity of
0.86
Ω
cm
, a carrier concentration of
1.05
×
10
18
cm
-
3
, and a Hall mobility of
6.8
cm
2
/ Vs. The average optical transmittance in visible spectrum is 76%.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10854-021-05861-2</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-7098-0126</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0957-4522 |
ispartof | Journal of materials science. Materials in electronics, 2021-05, Vol.32 (9), p.12308-12317 |
issn | 0957-4522 1573-482X |
language | eng |
recordid | cdi_proquest_journals_2528311484 |
source | SpringerLink Journals - AutoHoldings |
subjects | Argon Carrier density Characterization and Evaluation of Materials Chemistry and Materials Science Electrical measurement Electrical resistivity Electron mobility Energy gap Hall effect Magnetron sputtering Materials Science Optical and Electronic Materials Optical properties Optoelectronics Pressure dependence Refractivity Spectroellipsometry Substrates Thickness measurement Thin films Tin dioxide Tin oxides Visible spectrum |
title | Argon pressure dependent optoelectronic characteristics of amorphous tin oxide thin films obtained by non-reactive RF sputtering process |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T01%3A18%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Argon%20pressure%20dependent%20optoelectronic%20characteristics%20of%20amorphous%20tin%20oxide%20thin%20films%20obtained%20by%20non-reactive%20RF%20sputtering%20process&rft.jtitle=Journal%20of%20materials%20science.%20Materials%20in%20electronics&rft.au=Ziani,%20N.&rft.date=2021-05-01&rft.volume=32&rft.issue=9&rft.spage=12308&rft.epage=12317&rft.pages=12308-12317&rft.issn=0957-4522&rft.eissn=1573-482X&rft_id=info:doi/10.1007/s10854-021-05861-2&rft_dat=%3Cproquest_cross%3E2528311484%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2528311484&rft_id=info:pmid/&rfr_iscdi=true |