Argon pressure dependent optoelectronic characteristics of amorphous tin oxide thin films obtained by non-reactive RF sputtering process

In this work, amorphous tin oxide thin films were deposited by non-reactive radio frequency magnetron sputtering. A ceramic SnO 2 target was used, while different working pressures were employed. The target to substrate distance was fixed to 17 cm, and the substrate was not intentionally heated. The...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science. Materials in electronics 2021-05, Vol.32 (9), p.12308-12317
Hauptverfasser: Ziani, N., Galca, A. C., Belkaid, M. S., Stavarache, I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12317
container_issue 9
container_start_page 12308
container_title Journal of materials science. Materials in electronics
container_volume 32
creator Ziani, N.
Galca, A. C.
Belkaid, M. S.
Stavarache, I.
description In this work, amorphous tin oxide thin films were deposited by non-reactive radio frequency magnetron sputtering. A ceramic SnO 2 target was used, while different working pressures were employed. The target to substrate distance was fixed to 17 cm, and the substrate was not intentionally heated. The properties of SnO 2 (thickness, refractive index dispersion, optical band gap, resistivity, free carriers concentration, carriers mobility, carriers majority type and their scattering time) have been inferred from spectroscopic ellipsometry, conventional UV-Vis spectroscopy and specific Hall electrical measurements. Thickness and refractive index are slightly dependent on the deposition conditions, while the optical band gap, free carriers concentration and their mobilities are changing from sample to sample. The evolution of the optical band gap and carriers concentration is correlated to the active defects concentration. Amorphous SnO 2 films grown at 0.4 Pa have the lowest resistivity of 0.86 Ω cm , a carrier concentration of 1.05 × 10 18 cm - 3 , and a Hall mobility of 6.8 cm 2 / Vs. The average optical transmittance in visible spectrum is 76%.
doi_str_mv 10.1007/s10854-021-05861-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2528311484</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2528311484</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-a5708462508946373fb8732289045114a8bf9009b46f9856e4147c36909e06093</originalsourceid><addsrcrecordid>eNp9kMtqHDEQRUVwIBPbP-CVwGslpVe3tDTGj4DBEBLITnRrqj0yM1JbUhv7D_zZ0WQC3nmlWtx7DrqEnHH4xgH674WD0YqB4Ay06TgTn8iK614yZcSfI7ICq3umtBBfyNdSHgGgU9KsyNtFfkiRzhlLWTLSNc4Y1xgrTXNNuEVfc4rBU78Z8uAr5lBq8IWmiQ67lOdNWgqtIdL0EtZI66adU9juWmKsQ4i4puMrjSmyjK0fnpH-vKZlXuqeFR-aOvkmPyGfp2Fb8PT_e0x-X1_9urxld_c3Py4v7piX3FY26B6M6oQGY1UnezmNppdCGAtKc64GM04WwI6qm6zRHSquei87CxahAyuPyfmB27xPC5bqHtOSY1M6oYWRjWFUS4lDyudUSsbJzTnshvzqOLj94u6wuGuLu3-LO9FK8lAq8_5nmN_RH7T-AmlHhQE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2528311484</pqid></control><display><type>article</type><title>Argon pressure dependent optoelectronic characteristics of amorphous tin oxide thin films obtained by non-reactive RF sputtering process</title><source>SpringerLink Journals - AutoHoldings</source><creator>Ziani, N. ; Galca, A. C. ; Belkaid, M. S. ; Stavarache, I.</creator><creatorcontrib>Ziani, N. ; Galca, A. C. ; Belkaid, M. S. ; Stavarache, I.</creatorcontrib><description>In this work, amorphous tin oxide thin films were deposited by non-reactive radio frequency magnetron sputtering. A ceramic SnO 2 target was used, while different working pressures were employed. The target to substrate distance was fixed to 17 cm, and the substrate was not intentionally heated. The properties of SnO 2 (thickness, refractive index dispersion, optical band gap, resistivity, free carriers concentration, carriers mobility, carriers majority type and their scattering time) have been inferred from spectroscopic ellipsometry, conventional UV-Vis spectroscopy and specific Hall electrical measurements. Thickness and refractive index are slightly dependent on the deposition conditions, while the optical band gap, free carriers concentration and their mobilities are changing from sample to sample. The evolution of the optical band gap and carriers concentration is correlated to the active defects concentration. Amorphous SnO 2 films grown at 0.4 Pa have the lowest resistivity of 0.86 Ω cm , a carrier concentration of 1.05 × 10 18 cm - 3 , and a Hall mobility of 6.8 cm 2 / Vs. The average optical transmittance in visible spectrum is 76%.</description><identifier>ISSN: 0957-4522</identifier><identifier>EISSN: 1573-482X</identifier><identifier>DOI: 10.1007/s10854-021-05861-2</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Argon ; Carrier density ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Electrical measurement ; Electrical resistivity ; Electron mobility ; Energy gap ; Hall effect ; Magnetron sputtering ; Materials Science ; Optical and Electronic Materials ; Optical properties ; Optoelectronics ; Pressure dependence ; Refractivity ; Spectroellipsometry ; Substrates ; Thickness measurement ; Thin films ; Tin dioxide ; Tin oxides ; Visible spectrum</subject><ispartof>Journal of materials science. Materials in electronics, 2021-05, Vol.32 (9), p.12308-12317</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-a5708462508946373fb8732289045114a8bf9009b46f9856e4147c36909e06093</citedby><cites>FETCH-LOGICAL-c319t-a5708462508946373fb8732289045114a8bf9009b46f9856e4147c36909e06093</cites><orcidid>0000-0002-7098-0126</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10854-021-05861-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10854-021-05861-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids></links><search><creatorcontrib>Ziani, N.</creatorcontrib><creatorcontrib>Galca, A. C.</creatorcontrib><creatorcontrib>Belkaid, M. S.</creatorcontrib><creatorcontrib>Stavarache, I.</creatorcontrib><title>Argon pressure dependent optoelectronic characteristics of amorphous tin oxide thin films obtained by non-reactive RF sputtering process</title><title>Journal of materials science. Materials in electronics</title><addtitle>J Mater Sci: Mater Electron</addtitle><description>In this work, amorphous tin oxide thin films were deposited by non-reactive radio frequency magnetron sputtering. A ceramic SnO 2 target was used, while different working pressures were employed. The target to substrate distance was fixed to 17 cm, and the substrate was not intentionally heated. The properties of SnO 2 (thickness, refractive index dispersion, optical band gap, resistivity, free carriers concentration, carriers mobility, carriers majority type and their scattering time) have been inferred from spectroscopic ellipsometry, conventional UV-Vis spectroscopy and specific Hall electrical measurements. Thickness and refractive index are slightly dependent on the deposition conditions, while the optical band gap, free carriers concentration and their mobilities are changing from sample to sample. The evolution of the optical band gap and carriers concentration is correlated to the active defects concentration. Amorphous SnO 2 films grown at 0.4 Pa have the lowest resistivity of 0.86 Ω cm , a carrier concentration of 1.05 × 10 18 cm - 3 , and a Hall mobility of 6.8 cm 2 / Vs. The average optical transmittance in visible spectrum is 76%.</description><subject>Argon</subject><subject>Carrier density</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Electrical measurement</subject><subject>Electrical resistivity</subject><subject>Electron mobility</subject><subject>Energy gap</subject><subject>Hall effect</subject><subject>Magnetron sputtering</subject><subject>Materials Science</subject><subject>Optical and Electronic Materials</subject><subject>Optical properties</subject><subject>Optoelectronics</subject><subject>Pressure dependence</subject><subject>Refractivity</subject><subject>Spectroellipsometry</subject><subject>Substrates</subject><subject>Thickness measurement</subject><subject>Thin films</subject><subject>Tin dioxide</subject><subject>Tin oxides</subject><subject>Visible spectrum</subject><issn>0957-4522</issn><issn>1573-482X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kMtqHDEQRUVwIBPbP-CVwGslpVe3tDTGj4DBEBLITnRrqj0yM1JbUhv7D_zZ0WQC3nmlWtx7DrqEnHH4xgH674WD0YqB4Ay06TgTn8iK614yZcSfI7ICq3umtBBfyNdSHgGgU9KsyNtFfkiRzhlLWTLSNc4Y1xgrTXNNuEVfc4rBU78Z8uAr5lBq8IWmiQ67lOdNWgqtIdL0EtZI66adU9juWmKsQ4i4puMrjSmyjK0fnpH-vKZlXuqeFR-aOvkmPyGfp2Fb8PT_e0x-X1_9urxld_c3Py4v7piX3FY26B6M6oQGY1UnezmNppdCGAtKc64GM04WwI6qm6zRHSquei87CxahAyuPyfmB27xPC5bqHtOSY1M6oYWRjWFUS4lDyudUSsbJzTnshvzqOLj94u6wuGuLu3-LO9FK8lAq8_5nmN_RH7T-AmlHhQE</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Ziani, N.</creator><creator>Galca, A. C.</creator><creator>Belkaid, M. S.</creator><creator>Stavarache, I.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0002-7098-0126</orcidid></search><sort><creationdate>20210501</creationdate><title>Argon pressure dependent optoelectronic characteristics of amorphous tin oxide thin films obtained by non-reactive RF sputtering process</title><author>Ziani, N. ; Galca, A. C. ; Belkaid, M. S. ; Stavarache, I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-a5708462508946373fb8732289045114a8bf9009b46f9856e4147c36909e06093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Argon</topic><topic>Carrier density</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Electrical measurement</topic><topic>Electrical resistivity</topic><topic>Electron mobility</topic><topic>Energy gap</topic><topic>Hall effect</topic><topic>Magnetron sputtering</topic><topic>Materials Science</topic><topic>Optical and Electronic Materials</topic><topic>Optical properties</topic><topic>Optoelectronics</topic><topic>Pressure dependence</topic><topic>Refractivity</topic><topic>Spectroellipsometry</topic><topic>Substrates</topic><topic>Thickness measurement</topic><topic>Thin films</topic><topic>Tin dioxide</topic><topic>Tin oxides</topic><topic>Visible spectrum</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ziani, N.</creatorcontrib><creatorcontrib>Galca, A. C.</creatorcontrib><creatorcontrib>Belkaid, M. S.</creatorcontrib><creatorcontrib>Stavarache, I.</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Journal of materials science. Materials in electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ziani, N.</au><au>Galca, A. C.</au><au>Belkaid, M. S.</au><au>Stavarache, I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Argon pressure dependent optoelectronic characteristics of amorphous tin oxide thin films obtained by non-reactive RF sputtering process</atitle><jtitle>Journal of materials science. Materials in electronics</jtitle><stitle>J Mater Sci: Mater Electron</stitle><date>2021-05-01</date><risdate>2021</risdate><volume>32</volume><issue>9</issue><spage>12308</spage><epage>12317</epage><pages>12308-12317</pages><issn>0957-4522</issn><eissn>1573-482X</eissn><abstract>In this work, amorphous tin oxide thin films were deposited by non-reactive radio frequency magnetron sputtering. A ceramic SnO 2 target was used, while different working pressures were employed. The target to substrate distance was fixed to 17 cm, and the substrate was not intentionally heated. The properties of SnO 2 (thickness, refractive index dispersion, optical band gap, resistivity, free carriers concentration, carriers mobility, carriers majority type and their scattering time) have been inferred from spectroscopic ellipsometry, conventional UV-Vis spectroscopy and specific Hall electrical measurements. Thickness and refractive index are slightly dependent on the deposition conditions, while the optical band gap, free carriers concentration and their mobilities are changing from sample to sample. The evolution of the optical band gap and carriers concentration is correlated to the active defects concentration. Amorphous SnO 2 films grown at 0.4 Pa have the lowest resistivity of 0.86 Ω cm , a carrier concentration of 1.05 × 10 18 cm - 3 , and a Hall mobility of 6.8 cm 2 / Vs. The average optical transmittance in visible spectrum is 76%.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10854-021-05861-2</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-7098-0126</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0957-4522
ispartof Journal of materials science. Materials in electronics, 2021-05, Vol.32 (9), p.12308-12317
issn 0957-4522
1573-482X
language eng
recordid cdi_proquest_journals_2528311484
source SpringerLink Journals - AutoHoldings
subjects Argon
Carrier density
Characterization and Evaluation of Materials
Chemistry and Materials Science
Electrical measurement
Electrical resistivity
Electron mobility
Energy gap
Hall effect
Magnetron sputtering
Materials Science
Optical and Electronic Materials
Optical properties
Optoelectronics
Pressure dependence
Refractivity
Spectroellipsometry
Substrates
Thickness measurement
Thin films
Tin dioxide
Tin oxides
Visible spectrum
title Argon pressure dependent optoelectronic characteristics of amorphous tin oxide thin films obtained by non-reactive RF sputtering process
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T01%3A18%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Argon%20pressure%20dependent%20optoelectronic%20characteristics%20of%20amorphous%20tin%20oxide%20thin%20films%20obtained%20by%20non-reactive%20RF%20sputtering%20process&rft.jtitle=Journal%20of%20materials%20science.%20Materials%20in%20electronics&rft.au=Ziani,%20N.&rft.date=2021-05-01&rft.volume=32&rft.issue=9&rft.spage=12308&rft.epage=12317&rft.pages=12308-12317&rft.issn=0957-4522&rft.eissn=1573-482X&rft_id=info:doi/10.1007/s10854-021-05861-2&rft_dat=%3Cproquest_cross%3E2528311484%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2528311484&rft_id=info:pmid/&rfr_iscdi=true