Potential PeVatron supernova remnant G106.3+2.7 seen in the highest-energy gamma rays

Cosmic rays (protons and other atomic nuclei) are believed to gain energies of petaelectronvolts (PeV) and beyond at astrophysical particle accelerators called ‘PeVatrons’ inside our Galaxy. Although a characteristic feature of a PeVatron is expected to be a hard gamma-ray energy spectrum that exten...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature astronomy 2021-05, Vol.5 (5), p.460-464
Hauptverfasser: Amenomori, M., Bao, Y. W., Bi, X. J., Chen, D., Chen, T. L., Chen, W. Y., Chen, Xu, Chen, Y., Cirennima, Cui, S. W., Danzengluobu, Ding, L. K., Fang, J. H., Fang, K., Feng, C. F., Feng, Zhaoyang, Feng, Z. Y., Gao, Qi, Gou, Q. B., Guo, Y. Q., Guo, Y. Y., He, H. H., He, Z. T., Hibino, K., Hotta, N., Hu, Haibing, Hu, H. B., Huang, J., Jia, H. Y., Jiang, L., Jin, H. B., Kasahara, K., Katayose, Y., Kato, C., Kato, S., Kawata, K., Kihara, W., Ko, Y., Kozai, M., Labaciren, Le, G. M., Li, A. F., Li, H. J., Li, W. J., Lin, Y. H., Liu, B., Liu, C., Liu, J. S., Liu, M. Y., Liu, W., Lou, Y.-Q., Lu, H., Meng, X. R., Munakata, K., Nakada, H., Nakamura, Y., Nanjo, H., Nishizawa, M., Ohnishi, M., Ohura, T., Ozawa, S., Qian, X. L., Qu, X. B., Saito, T., Sakata, M., Sako, T. K., Shao, J., Shibata, M., Shiomi, A., Sugimoto, H., Takano, W., Takita, M., Tan, Y. H., Tateyama, N., Torii, S., Tsuchiya, H., Udo, S., Wang, H., Wu, H. R., Xue, L., Yamamoto, Y., Yang, Z., Yokoe, Y., Yuan, A. F., Zhai, L. M., Zhang, H. M., Zhang, J. L., Zhang, X., Zhang, X. Y., Zhang, Y., Zhang, Yi, Zhang, Ying, Zhao, S. P., Zhaxisangzhu, Zhou, X. X.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 464
container_issue 5
container_start_page 460
container_title Nature astronomy
container_volume 5
creator Amenomori, M.
Bao, Y. W.
Bi, X. J.
Chen, D.
Chen, T. L.
Chen, W. Y.
Chen, Xu
Chen, Y.
Cirennima
Cui, S. W.
Danzengluobu
Ding, L. K.
Fang, J. H.
Fang, K.
Feng, C. F.
Feng, Zhaoyang
Feng, Z. Y.
Gao, Qi
Gou, Q. B.
Guo, Y. Q.
Guo, Y. Y.
He, H. H.
He, Z. T.
Hibino, K.
Hotta, N.
Hu, Haibing
Hu, H. B.
Huang, J.
Jia, H. Y.
Jiang, L.
Jin, H. B.
Kasahara, K.
Katayose, Y.
Kato, C.
Kato, S.
Kawata, K.
Kihara, W.
Ko, Y.
Kozai, M.
Labaciren
Le, G. M.
Li, A. F.
Li, H. J.
Li, W. J.
Lin, Y. H.
Liu, B.
Liu, C.
Liu, J. S.
Liu, M. Y.
Liu, W.
Lou, Y.-Q.
Lu, H.
Meng, X. R.
Munakata, K.
Nakada, H.
Nakamura, Y.
Nanjo, H.
Nishizawa, M.
Ohnishi, M.
Ohura, T.
Ozawa, S.
Qian, X. L.
Qu, X. B.
Saito, T.
Sakata, M.
Sako, T. K.
Shao, J.
Shibata, M.
Shiomi, A.
Sugimoto, H.
Takano, W.
Takita, M.
Tan, Y. H.
Tateyama, N.
Torii, S.
Tsuchiya, H.
Udo, S.
Wang, H.
Wu, H. R.
Xue, L.
Yamamoto, Y.
Yang, Z.
Yokoe, Y.
Yuan, A. F.
Zhai, L. M.
Zhang, H. M.
Zhang, J. L.
Zhang, X.
Zhang, X. Y.
Zhang, Y.
Zhang, Yi
Zhang, Ying
Zhao, S. P.
Zhaxisangzhu
Zhou, X. X.
description Cosmic rays (protons and other atomic nuclei) are believed to gain energies of petaelectronvolts (PeV) and beyond at astrophysical particle accelerators called ‘PeVatrons’ inside our Galaxy. Although a characteristic feature of a PeVatron is expected to be a hard gamma-ray energy spectrum that extends beyond 100 teraelectronvolts (TeV) without a cut-off, none of the currently known sources exhibit such a spectrum owing to the low maximum energy of accelerated cosmic rays or owing to insufficient detector sensitivity around 100 TeV. Here, we report the observation of gamma-ray emission from the supernova remnant G106.3+2.7 (refs. 1 , 2 ) above 10 TeV. This work provides flux data points up to and above 100 TeV and indicates that the very-high-energy gamma-ray emission above 10 TeV is well correlated with a molecular cloud 3 rather than with the pulsar PSR J2229+6114 (refs. 4 – 8 ). Regarding the gamma-ray emission mechanism of G106.3+2.7, this morphological feature appears to favour a hadronic origin via the π 0 decay caused by accelerated relativistic protons 9 over a leptonic origin via the inverse Compton scattering by relativistic electrons 10 , 11 . Furthermore, we point out that an X-ray flux upper limit on the synchrotron spectrum would provide important information to firmly establish the hadronic scenario as the mechanism of particle acceleration at the source. Gamma-ray emission up to and above 100 TeV is detected from the supernova remnant G106.3+2.7. The emission above 10 TeV is associated with a molecular cloud rather than the pulsar PSR J2229+6114, favouring a hadronic origin via the π 0 decay caused by accelerated relativistic protons.
doi_str_mv 10.1038/s41550-020-01294-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2528309044</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2528309044</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-7b61f0e33ad0fd8e033b1d7fab21afd03ae1c06738d56b24ea454331071b84273</originalsourceid><addsrcrecordid>eNp9kE1LA0EMhgdRsNT-AU8DHmVrMtnPoxStQsEerNdhtpvdbunO1pmt0H_vaAU9eQjJ4X2S8AhxjTBFoPzOx5gkEIEKhaqIo-JMjBQVWUSUpud_5ksx8X4LAKpIkBBHYrXsB7ZDa3ZyyW9mcL2V_rBnZ_sPIx131thBzhHSKd2qaSY9s5WtlcOG5aZtNuyHiC275igb03WBMUd_JS5qs_M8-eljsXp8eJ09RYuX-fPsfhGtCYshysoUa2AiU0Fd5QxEJVZZbUqFpq6ADOMa0ozyKklLFbOJk5gIIcMyj1VGY3Fz2rt3_fshvKK3_cHZcFKrROUEBcRxSKlTau167x3Xeu_azrijRtBfBvXJoA4G9bdBXQSITpAPYduw-139D_UJz4dxjw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2528309044</pqid></control><display><type>article</type><title>Potential PeVatron supernova remnant G106.3+2.7 seen in the highest-energy gamma rays</title><source>SpringerLink (Online service)</source><creator>Amenomori, M. ; Bao, Y. W. ; Bi, X. J. ; Chen, D. ; Chen, T. L. ; Chen, W. Y. ; Chen, Xu ; Chen, Y. ; Cirennima ; Cui, S. W. ; Danzengluobu ; Ding, L. K. ; Fang, J. H. ; Fang, K. ; Feng, C. F. ; Feng, Zhaoyang ; Feng, Z. Y. ; Gao, Qi ; Gou, Q. B. ; Guo, Y. Q. ; Guo, Y. Y. ; He, H. H. ; He, Z. T. ; Hibino, K. ; Hotta, N. ; Hu, Haibing ; Hu, H. B. ; Huang, J. ; Jia, H. Y. ; Jiang, L. ; Jin, H. B. ; Kasahara, K. ; Katayose, Y. ; Kato, C. ; Kato, S. ; Kawata, K. ; Kihara, W. ; Ko, Y. ; Kozai, M. ; Labaciren ; Le, G. M. ; Li, A. F. ; Li, H. J. ; Li, W. J. ; Lin, Y. H. ; Liu, B. ; Liu, C. ; Liu, J. S. ; Liu, M. Y. ; Liu, W. ; Lou, Y.-Q. ; Lu, H. ; Meng, X. R. ; Munakata, K. ; Nakada, H. ; Nakamura, Y. ; Nanjo, H. ; Nishizawa, M. ; Ohnishi, M. ; Ohura, T. ; Ozawa, S. ; Qian, X. L. ; Qu, X. B. ; Saito, T. ; Sakata, M. ; Sako, T. K. ; Shao, J. ; Shibata, M. ; Shiomi, A. ; Sugimoto, H. ; Takano, W. ; Takita, M. ; Tan, Y. H. ; Tateyama, N. ; Torii, S. ; Tsuchiya, H. ; Udo, S. ; Wang, H. ; Wu, H. R. ; Xue, L. ; Yamamoto, Y. ; Yang, Z. ; Yokoe, Y. ; Yuan, A. F. ; Zhai, L. M. ; Zhang, H. M. ; Zhang, J. L. ; Zhang, X. ; Zhang, X. Y. ; Zhang, Y. ; Zhang, Yi ; Zhang, Ying ; Zhao, S. P. ; Zhaxisangzhu ; Zhou, X. X.</creator><creatorcontrib>Amenomori, M. ; Bao, Y. W. ; Bi, X. J. ; Chen, D. ; Chen, T. L. ; Chen, W. Y. ; Chen, Xu ; Chen, Y. ; Cirennima ; Cui, S. W. ; Danzengluobu ; Ding, L. K. ; Fang, J. H. ; Fang, K. ; Feng, C. F. ; Feng, Zhaoyang ; Feng, Z. Y. ; Gao, Qi ; Gou, Q. B. ; Guo, Y. Q. ; Guo, Y. Y. ; He, H. H. ; He, Z. T. ; Hibino, K. ; Hotta, N. ; Hu, Haibing ; Hu, H. B. ; Huang, J. ; Jia, H. Y. ; Jiang, L. ; Jin, H. B. ; Kasahara, K. ; Katayose, Y. ; Kato, C. ; Kato, S. ; Kawata, K. ; Kihara, W. ; Ko, Y. ; Kozai, M. ; Labaciren ; Le, G. M. ; Li, A. F. ; Li, H. J. ; Li, W. J. ; Lin, Y. H. ; Liu, B. ; Liu, C. ; Liu, J. S. ; Liu, M. Y. ; Liu, W. ; Lou, Y.-Q. ; Lu, H. ; Meng, X. R. ; Munakata, K. ; Nakada, H. ; Nakamura, Y. ; Nanjo, H. ; Nishizawa, M. ; Ohnishi, M. ; Ohura, T. ; Ozawa, S. ; Qian, X. L. ; Qu, X. B. ; Saito, T. ; Sakata, M. ; Sako, T. K. ; Shao, J. ; Shibata, M. ; Shiomi, A. ; Sugimoto, H. ; Takano, W. ; Takita, M. ; Tan, Y. H. ; Tateyama, N. ; Torii, S. ; Tsuchiya, H. ; Udo, S. ; Wang, H. ; Wu, H. R. ; Xue, L. ; Yamamoto, Y. ; Yang, Z. ; Yokoe, Y. ; Yuan, A. F. ; Zhai, L. M. ; Zhang, H. M. ; Zhang, J. L. ; Zhang, X. ; Zhang, X. Y. ; Zhang, Y. ; Zhang, Yi ; Zhang, Ying ; Zhao, S. P. ; Zhaxisangzhu ; Zhou, X. X. ; The Tibet ASγ Collaboration</creatorcontrib><description>Cosmic rays (protons and other atomic nuclei) are believed to gain energies of petaelectronvolts (PeV) and beyond at astrophysical particle accelerators called ‘PeVatrons’ inside our Galaxy. Although a characteristic feature of a PeVatron is expected to be a hard gamma-ray energy spectrum that extends beyond 100 teraelectronvolts (TeV) without a cut-off, none of the currently known sources exhibit such a spectrum owing to the low maximum energy of accelerated cosmic rays or owing to insufficient detector sensitivity around 100 TeV. Here, we report the observation of gamma-ray emission from the supernova remnant G106.3+2.7 (refs. 1 , 2 ) above 10 TeV. This work provides flux data points up to and above 100 TeV and indicates that the very-high-energy gamma-ray emission above 10 TeV is well correlated with a molecular cloud 3 rather than with the pulsar PSR J2229+6114 (refs. 4 – 8 ). Regarding the gamma-ray emission mechanism of G106.3+2.7, this morphological feature appears to favour a hadronic origin via the π 0 decay caused by accelerated relativistic protons 9 over a leptonic origin via the inverse Compton scattering by relativistic electrons 10 , 11 . Furthermore, we point out that an X-ray flux upper limit on the synchrotron spectrum would provide important information to firmly establish the hadronic scenario as the mechanism of particle acceleration at the source. Gamma-ray emission up to and above 100 TeV is detected from the supernova remnant G106.3+2.7. The emission above 10 TeV is associated with a molecular cloud rather than the pulsar PSR J2229+6114, favouring a hadronic origin via the π 0 decay caused by accelerated relativistic protons.</description><identifier>ISSN: 2397-3366</identifier><identifier>EISSN: 2397-3366</identifier><identifier>DOI: 10.1038/s41550-020-01294-9</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/33/34/864 ; 639/33/34/866 ; Astronomy ; Astrophysics and Cosmology ; Cosmic rays ; Decay ; Energy ; Gamma rays ; Letter ; Physics ; Physics and Astronomy ; Supernovae</subject><ispartof>Nature astronomy, 2021-05, Vol.5 (5), p.460-464</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2021</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-7b61f0e33ad0fd8e033b1d7fab21afd03ae1c06738d56b24ea454331071b84273</citedby><cites>FETCH-LOGICAL-c319t-7b61f0e33ad0fd8e033b1d7fab21afd03ae1c06738d56b24ea454331071b84273</cites><orcidid>0000-0001-9259-6371 ; 0000-0001-8680-8323 ; 0000-0002-7003-6493 ; 0000-0001-5435-4013 ; 0000-0001-9138-3200 ; 0000-0003-3363-3827 ; 0000-0001-6719-1698 ; 0000-0001-5611-3301 ; 0000-0001-6223-4724 ; 0000-0002-4753-2798 ; 0000-0003-3946-8041 ; 0000-0002-1767-6280 ; 0000-0002-5965-5576 ; 0000-0002-9392-547X ; 0000-0002-6109-0113 ; 0000-0003-0435-5362 ; 0000-0002-6248-4456 ; 0000-0003-0439-1902 ; 0000-0001-8918-5248</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41550-020-01294-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41550-020-01294-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Amenomori, M.</creatorcontrib><creatorcontrib>Bao, Y. W.</creatorcontrib><creatorcontrib>Bi, X. J.</creatorcontrib><creatorcontrib>Chen, D.</creatorcontrib><creatorcontrib>Chen, T. L.</creatorcontrib><creatorcontrib>Chen, W. Y.</creatorcontrib><creatorcontrib>Chen, Xu</creatorcontrib><creatorcontrib>Chen, Y.</creatorcontrib><creatorcontrib>Cirennima</creatorcontrib><creatorcontrib>Cui, S. W.</creatorcontrib><creatorcontrib>Danzengluobu</creatorcontrib><creatorcontrib>Ding, L. K.</creatorcontrib><creatorcontrib>Fang, J. H.</creatorcontrib><creatorcontrib>Fang, K.</creatorcontrib><creatorcontrib>Feng, C. F.</creatorcontrib><creatorcontrib>Feng, Zhaoyang</creatorcontrib><creatorcontrib>Feng, Z. Y.</creatorcontrib><creatorcontrib>Gao, Qi</creatorcontrib><creatorcontrib>Gou, Q. B.</creatorcontrib><creatorcontrib>Guo, Y. Q.</creatorcontrib><creatorcontrib>Guo, Y. Y.</creatorcontrib><creatorcontrib>He, H. H.</creatorcontrib><creatorcontrib>He, Z. T.</creatorcontrib><creatorcontrib>Hibino, K.</creatorcontrib><creatorcontrib>Hotta, N.</creatorcontrib><creatorcontrib>Hu, Haibing</creatorcontrib><creatorcontrib>Hu, H. B.</creatorcontrib><creatorcontrib>Huang, J.</creatorcontrib><creatorcontrib>Jia, H. Y.</creatorcontrib><creatorcontrib>Jiang, L.</creatorcontrib><creatorcontrib>Jin, H. B.</creatorcontrib><creatorcontrib>Kasahara, K.</creatorcontrib><creatorcontrib>Katayose, Y.</creatorcontrib><creatorcontrib>Kato, C.</creatorcontrib><creatorcontrib>Kato, S.</creatorcontrib><creatorcontrib>Kawata, K.</creatorcontrib><creatorcontrib>Kihara, W.</creatorcontrib><creatorcontrib>Ko, Y.</creatorcontrib><creatorcontrib>Kozai, M.</creatorcontrib><creatorcontrib>Labaciren</creatorcontrib><creatorcontrib>Le, G. M.</creatorcontrib><creatorcontrib>Li, A. F.</creatorcontrib><creatorcontrib>Li, H. J.</creatorcontrib><creatorcontrib>Li, W. J.</creatorcontrib><creatorcontrib>Lin, Y. H.</creatorcontrib><creatorcontrib>Liu, B.</creatorcontrib><creatorcontrib>Liu, C.</creatorcontrib><creatorcontrib>Liu, J. S.</creatorcontrib><creatorcontrib>Liu, M. Y.</creatorcontrib><creatorcontrib>Liu, W.</creatorcontrib><creatorcontrib>Lou, Y.-Q.</creatorcontrib><creatorcontrib>Lu, H.</creatorcontrib><creatorcontrib>Meng, X. R.</creatorcontrib><creatorcontrib>Munakata, K.</creatorcontrib><creatorcontrib>Nakada, H.</creatorcontrib><creatorcontrib>Nakamura, Y.</creatorcontrib><creatorcontrib>Nanjo, H.</creatorcontrib><creatorcontrib>Nishizawa, M.</creatorcontrib><creatorcontrib>Ohnishi, M.</creatorcontrib><creatorcontrib>Ohura, T.</creatorcontrib><creatorcontrib>Ozawa, S.</creatorcontrib><creatorcontrib>Qian, X. L.</creatorcontrib><creatorcontrib>Qu, X. B.</creatorcontrib><creatorcontrib>Saito, T.</creatorcontrib><creatorcontrib>Sakata, M.</creatorcontrib><creatorcontrib>Sako, T. K.</creatorcontrib><creatorcontrib>Shao, J.</creatorcontrib><creatorcontrib>Shibata, M.</creatorcontrib><creatorcontrib>Shiomi, A.</creatorcontrib><creatorcontrib>Sugimoto, H.</creatorcontrib><creatorcontrib>Takano, W.</creatorcontrib><creatorcontrib>Takita, M.</creatorcontrib><creatorcontrib>Tan, Y. H.</creatorcontrib><creatorcontrib>Tateyama, N.</creatorcontrib><creatorcontrib>Torii, S.</creatorcontrib><creatorcontrib>Tsuchiya, H.</creatorcontrib><creatorcontrib>Udo, S.</creatorcontrib><creatorcontrib>Wang, H.</creatorcontrib><creatorcontrib>Wu, H. R.</creatorcontrib><creatorcontrib>Xue, L.</creatorcontrib><creatorcontrib>Yamamoto, Y.</creatorcontrib><creatorcontrib>Yang, Z.</creatorcontrib><creatorcontrib>Yokoe, Y.</creatorcontrib><creatorcontrib>Yuan, A. F.</creatorcontrib><creatorcontrib>Zhai, L. M.</creatorcontrib><creatorcontrib>Zhang, H. M.</creatorcontrib><creatorcontrib>Zhang, J. L.</creatorcontrib><creatorcontrib>Zhang, X.</creatorcontrib><creatorcontrib>Zhang, X. Y.</creatorcontrib><creatorcontrib>Zhang, Y.</creatorcontrib><creatorcontrib>Zhang, Yi</creatorcontrib><creatorcontrib>Zhang, Ying</creatorcontrib><creatorcontrib>Zhao, S. P.</creatorcontrib><creatorcontrib>Zhaxisangzhu</creatorcontrib><creatorcontrib>Zhou, X. X.</creatorcontrib><creatorcontrib>The Tibet ASγ Collaboration</creatorcontrib><title>Potential PeVatron supernova remnant G106.3+2.7 seen in the highest-energy gamma rays</title><title>Nature astronomy</title><addtitle>Nat Astron</addtitle><description>Cosmic rays (protons and other atomic nuclei) are believed to gain energies of petaelectronvolts (PeV) and beyond at astrophysical particle accelerators called ‘PeVatrons’ inside our Galaxy. Although a characteristic feature of a PeVatron is expected to be a hard gamma-ray energy spectrum that extends beyond 100 teraelectronvolts (TeV) without a cut-off, none of the currently known sources exhibit such a spectrum owing to the low maximum energy of accelerated cosmic rays or owing to insufficient detector sensitivity around 100 TeV. Here, we report the observation of gamma-ray emission from the supernova remnant G106.3+2.7 (refs. 1 , 2 ) above 10 TeV. This work provides flux data points up to and above 100 TeV and indicates that the very-high-energy gamma-ray emission above 10 TeV is well correlated with a molecular cloud 3 rather than with the pulsar PSR J2229+6114 (refs. 4 – 8 ). Regarding the gamma-ray emission mechanism of G106.3+2.7, this morphological feature appears to favour a hadronic origin via the π 0 decay caused by accelerated relativistic protons 9 over a leptonic origin via the inverse Compton scattering by relativistic electrons 10 , 11 . Furthermore, we point out that an X-ray flux upper limit on the synchrotron spectrum would provide important information to firmly establish the hadronic scenario as the mechanism of particle acceleration at the source. Gamma-ray emission up to and above 100 TeV is detected from the supernova remnant G106.3+2.7. The emission above 10 TeV is associated with a molecular cloud rather than the pulsar PSR J2229+6114, favouring a hadronic origin via the π 0 decay caused by accelerated relativistic protons.</description><subject>639/33/34/864</subject><subject>639/33/34/866</subject><subject>Astronomy</subject><subject>Astrophysics and Cosmology</subject><subject>Cosmic rays</subject><subject>Decay</subject><subject>Energy</subject><subject>Gamma rays</subject><subject>Letter</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Supernovae</subject><issn>2397-3366</issn><issn>2397-3366</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kE1LA0EMhgdRsNT-AU8DHmVrMtnPoxStQsEerNdhtpvdbunO1pmt0H_vaAU9eQjJ4X2S8AhxjTBFoPzOx5gkEIEKhaqIo-JMjBQVWUSUpud_5ksx8X4LAKpIkBBHYrXsB7ZDa3ZyyW9mcL2V_rBnZ_sPIx131thBzhHSKd2qaSY9s5WtlcOG5aZtNuyHiC275igb03WBMUd_JS5qs_M8-eljsXp8eJ09RYuX-fPsfhGtCYshysoUa2AiU0Fd5QxEJVZZbUqFpq6ADOMa0ozyKklLFbOJk5gIIcMyj1VGY3Fz2rt3_fshvKK3_cHZcFKrROUEBcRxSKlTau167x3Xeu_azrijRtBfBvXJoA4G9bdBXQSITpAPYduw-139D_UJz4dxjw</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Amenomori, M.</creator><creator>Bao, Y. W.</creator><creator>Bi, X. J.</creator><creator>Chen, D.</creator><creator>Chen, T. L.</creator><creator>Chen, W. Y.</creator><creator>Chen, Xu</creator><creator>Chen, Y.</creator><creator>Cirennima</creator><creator>Cui, S. W.</creator><creator>Danzengluobu</creator><creator>Ding, L. K.</creator><creator>Fang, J. H.</creator><creator>Fang, K.</creator><creator>Feng, C. F.</creator><creator>Feng, Zhaoyang</creator><creator>Feng, Z. Y.</creator><creator>Gao, Qi</creator><creator>Gou, Q. B.</creator><creator>Guo, Y. Q.</creator><creator>Guo, Y. Y.</creator><creator>He, H. H.</creator><creator>He, Z. T.</creator><creator>Hibino, K.</creator><creator>Hotta, N.</creator><creator>Hu, Haibing</creator><creator>Hu, H. B.</creator><creator>Huang, J.</creator><creator>Jia, H. Y.</creator><creator>Jiang, L.</creator><creator>Jin, H. B.</creator><creator>Kasahara, K.</creator><creator>Katayose, Y.</creator><creator>Kato, C.</creator><creator>Kato, S.</creator><creator>Kawata, K.</creator><creator>Kihara, W.</creator><creator>Ko, Y.</creator><creator>Kozai, M.</creator><creator>Labaciren</creator><creator>Le, G. M.</creator><creator>Li, A. F.</creator><creator>Li, H. J.</creator><creator>Li, W. J.</creator><creator>Lin, Y. H.</creator><creator>Liu, B.</creator><creator>Liu, C.</creator><creator>Liu, J. S.</creator><creator>Liu, M. Y.</creator><creator>Liu, W.</creator><creator>Lou, Y.-Q.</creator><creator>Lu, H.</creator><creator>Meng, X. R.</creator><creator>Munakata, K.</creator><creator>Nakada, H.</creator><creator>Nakamura, Y.</creator><creator>Nanjo, H.</creator><creator>Nishizawa, M.</creator><creator>Ohnishi, M.</creator><creator>Ohura, T.</creator><creator>Ozawa, S.</creator><creator>Qian, X. L.</creator><creator>Qu, X. B.</creator><creator>Saito, T.</creator><creator>Sakata, M.</creator><creator>Sako, T. K.</creator><creator>Shao, J.</creator><creator>Shibata, M.</creator><creator>Shiomi, A.</creator><creator>Sugimoto, H.</creator><creator>Takano, W.</creator><creator>Takita, M.</creator><creator>Tan, Y. H.</creator><creator>Tateyama, N.</creator><creator>Torii, S.</creator><creator>Tsuchiya, H.</creator><creator>Udo, S.</creator><creator>Wang, H.</creator><creator>Wu, H. R.</creator><creator>Xue, L.</creator><creator>Yamamoto, Y.</creator><creator>Yang, Z.</creator><creator>Yokoe, Y.</creator><creator>Yuan, A. F.</creator><creator>Zhai, L. M.</creator><creator>Zhang, H. M.</creator><creator>Zhang, J. L.</creator><creator>Zhang, X.</creator><creator>Zhang, X. Y.</creator><creator>Zhang, Y.</creator><creator>Zhang, Yi</creator><creator>Zhang, Ying</creator><creator>Zhao, S. P.</creator><creator>Zhaxisangzhu</creator><creator>Zhou, X. X.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0001-9259-6371</orcidid><orcidid>https://orcid.org/0000-0001-8680-8323</orcidid><orcidid>https://orcid.org/0000-0002-7003-6493</orcidid><orcidid>https://orcid.org/0000-0001-5435-4013</orcidid><orcidid>https://orcid.org/0000-0001-9138-3200</orcidid><orcidid>https://orcid.org/0000-0003-3363-3827</orcidid><orcidid>https://orcid.org/0000-0001-6719-1698</orcidid><orcidid>https://orcid.org/0000-0001-5611-3301</orcidid><orcidid>https://orcid.org/0000-0001-6223-4724</orcidid><orcidid>https://orcid.org/0000-0002-4753-2798</orcidid><orcidid>https://orcid.org/0000-0003-3946-8041</orcidid><orcidid>https://orcid.org/0000-0002-1767-6280</orcidid><orcidid>https://orcid.org/0000-0002-5965-5576</orcidid><orcidid>https://orcid.org/0000-0002-9392-547X</orcidid><orcidid>https://orcid.org/0000-0002-6109-0113</orcidid><orcidid>https://orcid.org/0000-0003-0435-5362</orcidid><orcidid>https://orcid.org/0000-0002-6248-4456</orcidid><orcidid>https://orcid.org/0000-0003-0439-1902</orcidid><orcidid>https://orcid.org/0000-0001-8918-5248</orcidid></search><sort><creationdate>20210501</creationdate><title>Potential PeVatron supernova remnant G106.3+2.7 seen in the highest-energy gamma rays</title><author>Amenomori, M. ; Bao, Y. W. ; Bi, X. J. ; Chen, D. ; Chen, T. L. ; Chen, W. Y. ; Chen, Xu ; Chen, Y. ; Cirennima ; Cui, S. W. ; Danzengluobu ; Ding, L. K. ; Fang, J. H. ; Fang, K. ; Feng, C. F. ; Feng, Zhaoyang ; Feng, Z. Y. ; Gao, Qi ; Gou, Q. B. ; Guo, Y. Q. ; Guo, Y. Y. ; He, H. H. ; He, Z. T. ; Hibino, K. ; Hotta, N. ; Hu, Haibing ; Hu, H. B. ; Huang, J. ; Jia, H. Y. ; Jiang, L. ; Jin, H. B. ; Kasahara, K. ; Katayose, Y. ; Kato, C. ; Kato, S. ; Kawata, K. ; Kihara, W. ; Ko, Y. ; Kozai, M. ; Labaciren ; Le, G. M. ; Li, A. F. ; Li, H. J. ; Li, W. J. ; Lin, Y. H. ; Liu, B. ; Liu, C. ; Liu, J. S. ; Liu, M. Y. ; Liu, W. ; Lou, Y.-Q. ; Lu, H. ; Meng, X. R. ; Munakata, K. ; Nakada, H. ; Nakamura, Y. ; Nanjo, H. ; Nishizawa, M. ; Ohnishi, M. ; Ohura, T. ; Ozawa, S. ; Qian, X. L. ; Qu, X. B. ; Saito, T. ; Sakata, M. ; Sako, T. K. ; Shao, J. ; Shibata, M. ; Shiomi, A. ; Sugimoto, H. ; Takano, W. ; Takita, M. ; Tan, Y. H. ; Tateyama, N. ; Torii, S. ; Tsuchiya, H. ; Udo, S. ; Wang, H. ; Wu, H. R. ; Xue, L. ; Yamamoto, Y. ; Yang, Z. ; Yokoe, Y. ; Yuan, A. F. ; Zhai, L. M. ; Zhang, H. M. ; Zhang, J. L. ; Zhang, X. ; Zhang, X. Y. ; Zhang, Y. ; Zhang, Yi ; Zhang, Ying ; Zhao, S. P. ; Zhaxisangzhu ; Zhou, X. X.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-7b61f0e33ad0fd8e033b1d7fab21afd03ae1c06738d56b24ea454331071b84273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>639/33/34/864</topic><topic>639/33/34/866</topic><topic>Astronomy</topic><topic>Astrophysics and Cosmology</topic><topic>Cosmic rays</topic><topic>Decay</topic><topic>Energy</topic><topic>Gamma rays</topic><topic>Letter</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Supernovae</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Amenomori, M.</creatorcontrib><creatorcontrib>Bao, Y. W.</creatorcontrib><creatorcontrib>Bi, X. J.</creatorcontrib><creatorcontrib>Chen, D.</creatorcontrib><creatorcontrib>Chen, T. L.</creatorcontrib><creatorcontrib>Chen, W. Y.</creatorcontrib><creatorcontrib>Chen, Xu</creatorcontrib><creatorcontrib>Chen, Y.</creatorcontrib><creatorcontrib>Cirennima</creatorcontrib><creatorcontrib>Cui, S. W.</creatorcontrib><creatorcontrib>Danzengluobu</creatorcontrib><creatorcontrib>Ding, L. K.</creatorcontrib><creatorcontrib>Fang, J. H.</creatorcontrib><creatorcontrib>Fang, K.</creatorcontrib><creatorcontrib>Feng, C. F.</creatorcontrib><creatorcontrib>Feng, Zhaoyang</creatorcontrib><creatorcontrib>Feng, Z. Y.</creatorcontrib><creatorcontrib>Gao, Qi</creatorcontrib><creatorcontrib>Gou, Q. B.</creatorcontrib><creatorcontrib>Guo, Y. Q.</creatorcontrib><creatorcontrib>Guo, Y. Y.</creatorcontrib><creatorcontrib>He, H. H.</creatorcontrib><creatorcontrib>He, Z. T.</creatorcontrib><creatorcontrib>Hibino, K.</creatorcontrib><creatorcontrib>Hotta, N.</creatorcontrib><creatorcontrib>Hu, Haibing</creatorcontrib><creatorcontrib>Hu, H. B.</creatorcontrib><creatorcontrib>Huang, J.</creatorcontrib><creatorcontrib>Jia, H. Y.</creatorcontrib><creatorcontrib>Jiang, L.</creatorcontrib><creatorcontrib>Jin, H. B.</creatorcontrib><creatorcontrib>Kasahara, K.</creatorcontrib><creatorcontrib>Katayose, Y.</creatorcontrib><creatorcontrib>Kato, C.</creatorcontrib><creatorcontrib>Kato, S.</creatorcontrib><creatorcontrib>Kawata, K.</creatorcontrib><creatorcontrib>Kihara, W.</creatorcontrib><creatorcontrib>Ko, Y.</creatorcontrib><creatorcontrib>Kozai, M.</creatorcontrib><creatorcontrib>Labaciren</creatorcontrib><creatorcontrib>Le, G. M.</creatorcontrib><creatorcontrib>Li, A. F.</creatorcontrib><creatorcontrib>Li, H. J.</creatorcontrib><creatorcontrib>Li, W. J.</creatorcontrib><creatorcontrib>Lin, Y. H.</creatorcontrib><creatorcontrib>Liu, B.</creatorcontrib><creatorcontrib>Liu, C.</creatorcontrib><creatorcontrib>Liu, J. S.</creatorcontrib><creatorcontrib>Liu, M. Y.</creatorcontrib><creatorcontrib>Liu, W.</creatorcontrib><creatorcontrib>Lou, Y.-Q.</creatorcontrib><creatorcontrib>Lu, H.</creatorcontrib><creatorcontrib>Meng, X. R.</creatorcontrib><creatorcontrib>Munakata, K.</creatorcontrib><creatorcontrib>Nakada, H.</creatorcontrib><creatorcontrib>Nakamura, Y.</creatorcontrib><creatorcontrib>Nanjo, H.</creatorcontrib><creatorcontrib>Nishizawa, M.</creatorcontrib><creatorcontrib>Ohnishi, M.</creatorcontrib><creatorcontrib>Ohura, T.</creatorcontrib><creatorcontrib>Ozawa, S.</creatorcontrib><creatorcontrib>Qian, X. L.</creatorcontrib><creatorcontrib>Qu, X. B.</creatorcontrib><creatorcontrib>Saito, T.</creatorcontrib><creatorcontrib>Sakata, M.</creatorcontrib><creatorcontrib>Sako, T. K.</creatorcontrib><creatorcontrib>Shao, J.</creatorcontrib><creatorcontrib>Shibata, M.</creatorcontrib><creatorcontrib>Shiomi, A.</creatorcontrib><creatorcontrib>Sugimoto, H.</creatorcontrib><creatorcontrib>Takano, W.</creatorcontrib><creatorcontrib>Takita, M.</creatorcontrib><creatorcontrib>Tan, Y. H.</creatorcontrib><creatorcontrib>Tateyama, N.</creatorcontrib><creatorcontrib>Torii, S.</creatorcontrib><creatorcontrib>Tsuchiya, H.</creatorcontrib><creatorcontrib>Udo, S.</creatorcontrib><creatorcontrib>Wang, H.</creatorcontrib><creatorcontrib>Wu, H. R.</creatorcontrib><creatorcontrib>Xue, L.</creatorcontrib><creatorcontrib>Yamamoto, Y.</creatorcontrib><creatorcontrib>Yang, Z.</creatorcontrib><creatorcontrib>Yokoe, Y.</creatorcontrib><creatorcontrib>Yuan, A. F.</creatorcontrib><creatorcontrib>Zhai, L. M.</creatorcontrib><creatorcontrib>Zhang, H. M.</creatorcontrib><creatorcontrib>Zhang, J. L.</creatorcontrib><creatorcontrib>Zhang, X.</creatorcontrib><creatorcontrib>Zhang, X. Y.</creatorcontrib><creatorcontrib>Zhang, Y.</creatorcontrib><creatorcontrib>Zhang, Yi</creatorcontrib><creatorcontrib>Zhang, Ying</creatorcontrib><creatorcontrib>Zhao, S. P.</creatorcontrib><creatorcontrib>Zhaxisangzhu</creatorcontrib><creatorcontrib>Zhou, X. X.</creatorcontrib><creatorcontrib>The Tibet ASγ Collaboration</creatorcontrib><collection>CrossRef</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Nature astronomy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Amenomori, M.</au><au>Bao, Y. W.</au><au>Bi, X. J.</au><au>Chen, D.</au><au>Chen, T. L.</au><au>Chen, W. Y.</au><au>Chen, Xu</au><au>Chen, Y.</au><au>Cirennima</au><au>Cui, S. W.</au><au>Danzengluobu</au><au>Ding, L. K.</au><au>Fang, J. H.</au><au>Fang, K.</au><au>Feng, C. F.</au><au>Feng, Zhaoyang</au><au>Feng, Z. Y.</au><au>Gao, Qi</au><au>Gou, Q. B.</au><au>Guo, Y. Q.</au><au>Guo, Y. Y.</au><au>He, H. H.</au><au>He, Z. T.</au><au>Hibino, K.</au><au>Hotta, N.</au><au>Hu, Haibing</au><au>Hu, H. B.</au><au>Huang, J.</au><au>Jia, H. Y.</au><au>Jiang, L.</au><au>Jin, H. B.</au><au>Kasahara, K.</au><au>Katayose, Y.</au><au>Kato, C.</au><au>Kato, S.</au><au>Kawata, K.</au><au>Kihara, W.</au><au>Ko, Y.</au><au>Kozai, M.</au><au>Labaciren</au><au>Le, G. M.</au><au>Li, A. F.</au><au>Li, H. J.</au><au>Li, W. J.</au><au>Lin, Y. H.</au><au>Liu, B.</au><au>Liu, C.</au><au>Liu, J. S.</au><au>Liu, M. Y.</au><au>Liu, W.</au><au>Lou, Y.-Q.</au><au>Lu, H.</au><au>Meng, X. R.</au><au>Munakata, K.</au><au>Nakada, H.</au><au>Nakamura, Y.</au><au>Nanjo, H.</au><au>Nishizawa, M.</au><au>Ohnishi, M.</au><au>Ohura, T.</au><au>Ozawa, S.</au><au>Qian, X. L.</au><au>Qu, X. B.</au><au>Saito, T.</au><au>Sakata, M.</au><au>Sako, T. K.</au><au>Shao, J.</au><au>Shibata, M.</au><au>Shiomi, A.</au><au>Sugimoto, H.</au><au>Takano, W.</au><au>Takita, M.</au><au>Tan, Y. H.</au><au>Tateyama, N.</au><au>Torii, S.</au><au>Tsuchiya, H.</au><au>Udo, S.</au><au>Wang, H.</au><au>Wu, H. R.</au><au>Xue, L.</au><au>Yamamoto, Y.</au><au>Yang, Z.</au><au>Yokoe, Y.</au><au>Yuan, A. F.</au><au>Zhai, L. M.</au><au>Zhang, H. M.</au><au>Zhang, J. L.</au><au>Zhang, X.</au><au>Zhang, X. Y.</au><au>Zhang, Y.</au><au>Zhang, Yi</au><au>Zhang, Ying</au><au>Zhao, S. P.</au><au>Zhaxisangzhu</au><au>Zhou, X. X.</au><aucorp>The Tibet ASγ Collaboration</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Potential PeVatron supernova remnant G106.3+2.7 seen in the highest-energy gamma rays</atitle><jtitle>Nature astronomy</jtitle><stitle>Nat Astron</stitle><date>2021-05-01</date><risdate>2021</risdate><volume>5</volume><issue>5</issue><spage>460</spage><epage>464</epage><pages>460-464</pages><issn>2397-3366</issn><eissn>2397-3366</eissn><abstract>Cosmic rays (protons and other atomic nuclei) are believed to gain energies of petaelectronvolts (PeV) and beyond at astrophysical particle accelerators called ‘PeVatrons’ inside our Galaxy. Although a characteristic feature of a PeVatron is expected to be a hard gamma-ray energy spectrum that extends beyond 100 teraelectronvolts (TeV) without a cut-off, none of the currently known sources exhibit such a spectrum owing to the low maximum energy of accelerated cosmic rays or owing to insufficient detector sensitivity around 100 TeV. Here, we report the observation of gamma-ray emission from the supernova remnant G106.3+2.7 (refs. 1 , 2 ) above 10 TeV. This work provides flux data points up to and above 100 TeV and indicates that the very-high-energy gamma-ray emission above 10 TeV is well correlated with a molecular cloud 3 rather than with the pulsar PSR J2229+6114 (refs. 4 – 8 ). Regarding the gamma-ray emission mechanism of G106.3+2.7, this morphological feature appears to favour a hadronic origin via the π 0 decay caused by accelerated relativistic protons 9 over a leptonic origin via the inverse Compton scattering by relativistic electrons 10 , 11 . Furthermore, we point out that an X-ray flux upper limit on the synchrotron spectrum would provide important information to firmly establish the hadronic scenario as the mechanism of particle acceleration at the source. Gamma-ray emission up to and above 100 TeV is detected from the supernova remnant G106.3+2.7. The emission above 10 TeV is associated with a molecular cloud rather than the pulsar PSR J2229+6114, favouring a hadronic origin via the π 0 decay caused by accelerated relativistic protons.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41550-020-01294-9</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-9259-6371</orcidid><orcidid>https://orcid.org/0000-0001-8680-8323</orcidid><orcidid>https://orcid.org/0000-0002-7003-6493</orcidid><orcidid>https://orcid.org/0000-0001-5435-4013</orcidid><orcidid>https://orcid.org/0000-0001-9138-3200</orcidid><orcidid>https://orcid.org/0000-0003-3363-3827</orcidid><orcidid>https://orcid.org/0000-0001-6719-1698</orcidid><orcidid>https://orcid.org/0000-0001-5611-3301</orcidid><orcidid>https://orcid.org/0000-0001-6223-4724</orcidid><orcidid>https://orcid.org/0000-0002-4753-2798</orcidid><orcidid>https://orcid.org/0000-0003-3946-8041</orcidid><orcidid>https://orcid.org/0000-0002-1767-6280</orcidid><orcidid>https://orcid.org/0000-0002-5965-5576</orcidid><orcidid>https://orcid.org/0000-0002-9392-547X</orcidid><orcidid>https://orcid.org/0000-0002-6109-0113</orcidid><orcidid>https://orcid.org/0000-0003-0435-5362</orcidid><orcidid>https://orcid.org/0000-0002-6248-4456</orcidid><orcidid>https://orcid.org/0000-0003-0439-1902</orcidid><orcidid>https://orcid.org/0000-0001-8918-5248</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2397-3366
ispartof Nature astronomy, 2021-05, Vol.5 (5), p.460-464
issn 2397-3366
2397-3366
language eng
recordid cdi_proquest_journals_2528309044
source SpringerLink (Online service)
subjects 639/33/34/864
639/33/34/866
Astronomy
Astrophysics and Cosmology
Cosmic rays
Decay
Energy
Gamma rays
Letter
Physics
Physics and Astronomy
Supernovae
title Potential PeVatron supernova remnant G106.3+2.7 seen in the highest-energy gamma rays
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T07%3A09%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Potential%20PeVatron%20supernova%20remnant%20G106.3+2.7%20seen%20in%20the%20highest-energy%20gamma%20rays&rft.jtitle=Nature%20astronomy&rft.au=Amenomori,%20M.&rft.aucorp=The%20Tibet%20AS%CE%B3%20Collaboration&rft.date=2021-05-01&rft.volume=5&rft.issue=5&rft.spage=460&rft.epage=464&rft.pages=460-464&rft.issn=2397-3366&rft.eissn=2397-3366&rft_id=info:doi/10.1038/s41550-020-01294-9&rft_dat=%3Cproquest_cross%3E2528309044%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2528309044&rft_id=info:pmid/&rfr_iscdi=true