Self-assembled reduced graphene oxide/polyaniline/sodium carboxymethyl cellulose nanocomposite for voltammetric recognition of tryptophan enantiomers
A nanocomposite was synthesized from reduced graphene oxide (rGO), polyaniline (PANI), and carboxymethyl cellulose (CMC) as the initial materials by in situ polymerization. The substrate rGO provides many active sites for in situ polymerization of aniline and self-assembly of CMC. Scanning electron...
Gespeichert in:
Veröffentlicht in: | Journal of materials science. Materials in electronics 2021-05, Vol.32 (9), p.11791-11804 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 11804 |
---|---|
container_issue | 9 |
container_start_page | 11791 |
container_title | Journal of materials science. Materials in electronics |
container_volume | 32 |
creator | Chen, Fang Niu, Xiaohui Yang, Xing Pei, Hebing Guo, Ruibin Liu, Nijuan Mo, Zunli |
description | A nanocomposite was synthesized from reduced graphene oxide (rGO), polyaniline (PANI), and carboxymethyl cellulose (CMC) as the initial materials by in situ polymerization. The substrate rGO provides many active sites for in situ polymerization of aniline and self-assembly of CMC. Scanning electron microscopy, X-ray diffraction, thermogravimetry, Raman, Infrared Spectroscopy, and X-ray photoelectron spectroscopies were used to characterize the morphology, electronic structure, and composition of different materials. The nanocomposite was used to modify a glassy carbon electrode (GCE) to obtain a sensor for chiral electrochemical recognition of tryptophan enantiomers. Their electrochemical properties and recognition abilities were investigated using cyclic voltammetry and differential pulse voltammetry, and the final consequence demonstrated that the modified GCE could well distinguish
l
-tryptophan and
d
-tryptophan. The enantiomeric selectivity is 2.26. The GCE was successfully used for the recognition of
d
-tryptophan and
l
-tryptophan in spiked serum and urine samples. |
doi_str_mv | 10.1007/s10854-021-05809-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2528308795</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2528308795</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-b5e7287b05867b7c9a50d8e0866439e34b2871864e6cec16b0535e67ded9d1ed3</originalsourceid><addsrcrecordid>eNp9kM1q3TAQhUVpILdpXiArQdbqlWzrx8sSmrQQ6KIJdCdkaXyvgiw5kl3iB8n7Ru0tdNfVgZnvzGEOQleMfmKUyn1hVPGO0IYRyhXtiXiHdozLlnSq-fke7WjPJel405yjD6U8UUpF16odev0BYSSmFJiGAA5ncKuteshmPkIEnF68g_2cwmaiDz7CviTn1wlbk4f0sk2wHLeALYSwhlQARxOTTdOcil8AjynjXyksZqpg9rYG2HSIfvEp4jTiJW_zkuajiRiqs44nyOUjOhtNKHD5Vy_Q4-2Xh5uv5P773bebz_fEtqxfyMBBNkoO9WUhB2l7w6lTQJWoz_XQdkPdMiU6EBYsExVsOQjpwPWOgWsv0PXp7pzT8wpl0U9pzbFG6oY3qqVK9rxSzYmyOZWSYdRz9pPJm2ZU_65fn-rXtX79p34tqqk9mUqF4wHyv9P_cb0Bpn-Njg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2528308795</pqid></control><display><type>article</type><title>Self-assembled reduced graphene oxide/polyaniline/sodium carboxymethyl cellulose nanocomposite for voltammetric recognition of tryptophan enantiomers</title><source>SpringerLink Journals - AutoHoldings</source><creator>Chen, Fang ; Niu, Xiaohui ; Yang, Xing ; Pei, Hebing ; Guo, Ruibin ; Liu, Nijuan ; Mo, Zunli</creator><creatorcontrib>Chen, Fang ; Niu, Xiaohui ; Yang, Xing ; Pei, Hebing ; Guo, Ruibin ; Liu, Nijuan ; Mo, Zunli</creatorcontrib><description>A nanocomposite was synthesized from reduced graphene oxide (rGO), polyaniline (PANI), and carboxymethyl cellulose (CMC) as the initial materials by in situ polymerization. The substrate rGO provides many active sites for in situ polymerization of aniline and self-assembly of CMC. Scanning electron microscopy, X-ray diffraction, thermogravimetry, Raman, Infrared Spectroscopy, and X-ray photoelectron spectroscopies were used to characterize the morphology, electronic structure, and composition of different materials. The nanocomposite was used to modify a glassy carbon electrode (GCE) to obtain a sensor for chiral electrochemical recognition of tryptophan enantiomers. Their electrochemical properties and recognition abilities were investigated using cyclic voltammetry and differential pulse voltammetry, and the final consequence demonstrated that the modified GCE could well distinguish
l
-tryptophan and
d
-tryptophan. The enantiomeric selectivity is 2.26. The GCE was successfully used for the recognition of
d
-tryptophan and
l
-tryptophan in spiked serum and urine samples.</description><identifier>ISSN: 0957-4522</identifier><identifier>EISSN: 1573-482X</identifier><identifier>DOI: 10.1007/s10854-021-05809-6</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Aniline ; Carboxymethyl cellulose ; Cellulose ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Electrochemical analysis ; Electronic structure ; Electrons ; Enantiomers ; Glassy carbon ; Graphene ; Infrared spectroscopy ; Materials Science ; Morphology ; Nanocomposites ; Optical and Electronic Materials ; Photoelectrons ; Polyanilines ; Polymerization ; Recognition ; Selectivity ; Self-assembly ; Sodium carboxymethyl cellulose ; Substrates ; Thermogravimetry ; Tryptophan ; Voltammetry ; X ray photoelectron spectroscopy</subject><ispartof>Journal of materials science. Materials in electronics, 2021-05, Vol.32 (9), p.11791-11804</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-b5e7287b05867b7c9a50d8e0866439e34b2871864e6cec16b0535e67ded9d1ed3</citedby><cites>FETCH-LOGICAL-c319t-b5e7287b05867b7c9a50d8e0866439e34b2871864e6cec16b0535e67ded9d1ed3</cites><orcidid>0000-0002-6714-9155</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10854-021-05809-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10854-021-05809-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Chen, Fang</creatorcontrib><creatorcontrib>Niu, Xiaohui</creatorcontrib><creatorcontrib>Yang, Xing</creatorcontrib><creatorcontrib>Pei, Hebing</creatorcontrib><creatorcontrib>Guo, Ruibin</creatorcontrib><creatorcontrib>Liu, Nijuan</creatorcontrib><creatorcontrib>Mo, Zunli</creatorcontrib><title>Self-assembled reduced graphene oxide/polyaniline/sodium carboxymethyl cellulose nanocomposite for voltammetric recognition of tryptophan enantiomers</title><title>Journal of materials science. Materials in electronics</title><addtitle>J Mater Sci: Mater Electron</addtitle><description>A nanocomposite was synthesized from reduced graphene oxide (rGO), polyaniline (PANI), and carboxymethyl cellulose (CMC) as the initial materials by in situ polymerization. The substrate rGO provides many active sites for in situ polymerization of aniline and self-assembly of CMC. Scanning electron microscopy, X-ray diffraction, thermogravimetry, Raman, Infrared Spectroscopy, and X-ray photoelectron spectroscopies were used to characterize the morphology, electronic structure, and composition of different materials. The nanocomposite was used to modify a glassy carbon electrode (GCE) to obtain a sensor for chiral electrochemical recognition of tryptophan enantiomers. Their electrochemical properties and recognition abilities were investigated using cyclic voltammetry and differential pulse voltammetry, and the final consequence demonstrated that the modified GCE could well distinguish
l
-tryptophan and
d
-tryptophan. The enantiomeric selectivity is 2.26. The GCE was successfully used for the recognition of
d
-tryptophan and
l
-tryptophan in spiked serum and urine samples.</description><subject>Aniline</subject><subject>Carboxymethyl cellulose</subject><subject>Cellulose</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Electrochemical analysis</subject><subject>Electronic structure</subject><subject>Electrons</subject><subject>Enantiomers</subject><subject>Glassy carbon</subject><subject>Graphene</subject><subject>Infrared spectroscopy</subject><subject>Materials Science</subject><subject>Morphology</subject><subject>Nanocomposites</subject><subject>Optical and Electronic Materials</subject><subject>Photoelectrons</subject><subject>Polyanilines</subject><subject>Polymerization</subject><subject>Recognition</subject><subject>Selectivity</subject><subject>Self-assembly</subject><subject>Sodium carboxymethyl cellulose</subject><subject>Substrates</subject><subject>Thermogravimetry</subject><subject>Tryptophan</subject><subject>Voltammetry</subject><subject>X ray photoelectron spectroscopy</subject><issn>0957-4522</issn><issn>1573-482X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kM1q3TAQhUVpILdpXiArQdbqlWzrx8sSmrQQ6KIJdCdkaXyvgiw5kl3iB8n7Ru0tdNfVgZnvzGEOQleMfmKUyn1hVPGO0IYRyhXtiXiHdozLlnSq-fke7WjPJel405yjD6U8UUpF16odev0BYSSmFJiGAA5ncKuteshmPkIEnF68g_2cwmaiDz7CviTn1wlbk4f0sk2wHLeALYSwhlQARxOTTdOcil8AjynjXyksZqpg9rYG2HSIfvEp4jTiJW_zkuajiRiqs44nyOUjOhtNKHD5Vy_Q4-2Xh5uv5P773bebz_fEtqxfyMBBNkoO9WUhB2l7w6lTQJWoz_XQdkPdMiU6EBYsExVsOQjpwPWOgWsv0PXp7pzT8wpl0U9pzbFG6oY3qqVK9rxSzYmyOZWSYdRz9pPJm2ZU_65fn-rXtX79p34tqqk9mUqF4wHyv9P_cb0Bpn-Njg</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Chen, Fang</creator><creator>Niu, Xiaohui</creator><creator>Yang, Xing</creator><creator>Pei, Hebing</creator><creator>Guo, Ruibin</creator><creator>Liu, Nijuan</creator><creator>Mo, Zunli</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0002-6714-9155</orcidid></search><sort><creationdate>20210501</creationdate><title>Self-assembled reduced graphene oxide/polyaniline/sodium carboxymethyl cellulose nanocomposite for voltammetric recognition of tryptophan enantiomers</title><author>Chen, Fang ; Niu, Xiaohui ; Yang, Xing ; Pei, Hebing ; Guo, Ruibin ; Liu, Nijuan ; Mo, Zunli</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-b5e7287b05867b7c9a50d8e0866439e34b2871864e6cec16b0535e67ded9d1ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aniline</topic><topic>Carboxymethyl cellulose</topic><topic>Cellulose</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Electrochemical analysis</topic><topic>Electronic structure</topic><topic>Electrons</topic><topic>Enantiomers</topic><topic>Glassy carbon</topic><topic>Graphene</topic><topic>Infrared spectroscopy</topic><topic>Materials Science</topic><topic>Morphology</topic><topic>Nanocomposites</topic><topic>Optical and Electronic Materials</topic><topic>Photoelectrons</topic><topic>Polyanilines</topic><topic>Polymerization</topic><topic>Recognition</topic><topic>Selectivity</topic><topic>Self-assembly</topic><topic>Sodium carboxymethyl cellulose</topic><topic>Substrates</topic><topic>Thermogravimetry</topic><topic>Tryptophan</topic><topic>Voltammetry</topic><topic>X ray photoelectron spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Fang</creatorcontrib><creatorcontrib>Niu, Xiaohui</creatorcontrib><creatorcontrib>Yang, Xing</creatorcontrib><creatorcontrib>Pei, Hebing</creatorcontrib><creatorcontrib>Guo, Ruibin</creatorcontrib><creatorcontrib>Liu, Nijuan</creatorcontrib><creatorcontrib>Mo, Zunli</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Journal of materials science. Materials in electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Fang</au><au>Niu, Xiaohui</au><au>Yang, Xing</au><au>Pei, Hebing</au><au>Guo, Ruibin</au><au>Liu, Nijuan</au><au>Mo, Zunli</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self-assembled reduced graphene oxide/polyaniline/sodium carboxymethyl cellulose nanocomposite for voltammetric recognition of tryptophan enantiomers</atitle><jtitle>Journal of materials science. Materials in electronics</jtitle><stitle>J Mater Sci: Mater Electron</stitle><date>2021-05-01</date><risdate>2021</risdate><volume>32</volume><issue>9</issue><spage>11791</spage><epage>11804</epage><pages>11791-11804</pages><issn>0957-4522</issn><eissn>1573-482X</eissn><abstract>A nanocomposite was synthesized from reduced graphene oxide (rGO), polyaniline (PANI), and carboxymethyl cellulose (CMC) as the initial materials by in situ polymerization. The substrate rGO provides many active sites for in situ polymerization of aniline and self-assembly of CMC. Scanning electron microscopy, X-ray diffraction, thermogravimetry, Raman, Infrared Spectroscopy, and X-ray photoelectron spectroscopies were used to characterize the morphology, electronic structure, and composition of different materials. The nanocomposite was used to modify a glassy carbon electrode (GCE) to obtain a sensor for chiral electrochemical recognition of tryptophan enantiomers. Their electrochemical properties and recognition abilities were investigated using cyclic voltammetry and differential pulse voltammetry, and the final consequence demonstrated that the modified GCE could well distinguish
l
-tryptophan and
d
-tryptophan. The enantiomeric selectivity is 2.26. The GCE was successfully used for the recognition of
d
-tryptophan and
l
-tryptophan in spiked serum and urine samples.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10854-021-05809-6</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-6714-9155</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0957-4522 |
ispartof | Journal of materials science. Materials in electronics, 2021-05, Vol.32 (9), p.11791-11804 |
issn | 0957-4522 1573-482X |
language | eng |
recordid | cdi_proquest_journals_2528308795 |
source | SpringerLink Journals - AutoHoldings |
subjects | Aniline Carboxymethyl cellulose Cellulose Characterization and Evaluation of Materials Chemistry and Materials Science Electrochemical analysis Electronic structure Electrons Enantiomers Glassy carbon Graphene Infrared spectroscopy Materials Science Morphology Nanocomposites Optical and Electronic Materials Photoelectrons Polyanilines Polymerization Recognition Selectivity Self-assembly Sodium carboxymethyl cellulose Substrates Thermogravimetry Tryptophan Voltammetry X ray photoelectron spectroscopy |
title | Self-assembled reduced graphene oxide/polyaniline/sodium carboxymethyl cellulose nanocomposite for voltammetric recognition of tryptophan enantiomers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T23%3A50%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self-assembled%20reduced%20graphene%20oxide/polyaniline/sodium%20carboxymethyl%20cellulose%20nanocomposite%20for%20voltammetric%20recognition%20of%20tryptophan%20enantiomers&rft.jtitle=Journal%20of%20materials%20science.%20Materials%20in%20electronics&rft.au=Chen,%20Fang&rft.date=2021-05-01&rft.volume=32&rft.issue=9&rft.spage=11791&rft.epage=11804&rft.pages=11791-11804&rft.issn=0957-4522&rft.eissn=1573-482X&rft_id=info:doi/10.1007/s10854-021-05809-6&rft_dat=%3Cproquest_cross%3E2528308795%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2528308795&rft_id=info:pmid/&rfr_iscdi=true |