Self-assembled reduced graphene oxide/polyaniline/sodium carboxymethyl cellulose nanocomposite for voltammetric recognition of tryptophan enantiomers

A nanocomposite was synthesized from reduced graphene oxide (rGO), polyaniline (PANI), and carboxymethyl cellulose (CMC) as the initial materials by in situ polymerization. The substrate rGO provides many active sites for in situ polymerization of aniline and self-assembly of CMC. Scanning electron...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science. Materials in electronics 2021-05, Vol.32 (9), p.11791-11804
Hauptverfasser: Chen, Fang, Niu, Xiaohui, Yang, Xing, Pei, Hebing, Guo, Ruibin, Liu, Nijuan, Mo, Zunli
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11804
container_issue 9
container_start_page 11791
container_title Journal of materials science. Materials in electronics
container_volume 32
creator Chen, Fang
Niu, Xiaohui
Yang, Xing
Pei, Hebing
Guo, Ruibin
Liu, Nijuan
Mo, Zunli
description A nanocomposite was synthesized from reduced graphene oxide (rGO), polyaniline (PANI), and carboxymethyl cellulose (CMC) as the initial materials by in situ polymerization. The substrate rGO provides many active sites for in situ polymerization of aniline and self-assembly of CMC. Scanning electron microscopy, X-ray diffraction, thermogravimetry, Raman, Infrared Spectroscopy, and X-ray photoelectron spectroscopies were used to characterize the morphology, electronic structure, and composition of different materials. The nanocomposite was used to modify a glassy carbon electrode (GCE) to obtain a sensor for chiral electrochemical recognition of tryptophan enantiomers. Their electrochemical properties and recognition abilities were investigated using cyclic voltammetry and differential pulse voltammetry, and the final consequence demonstrated that the modified GCE could well distinguish l -tryptophan and d -tryptophan. The enantiomeric selectivity is 2.26. The GCE was successfully used for the recognition of d -tryptophan and l -tryptophan in spiked serum and urine samples.
doi_str_mv 10.1007/s10854-021-05809-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2528308795</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2528308795</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-b5e7287b05867b7c9a50d8e0866439e34b2871864e6cec16b0535e67ded9d1ed3</originalsourceid><addsrcrecordid>eNp9kM1q3TAQhUVpILdpXiArQdbqlWzrx8sSmrQQ6KIJdCdkaXyvgiw5kl3iB8n7Ru0tdNfVgZnvzGEOQleMfmKUyn1hVPGO0IYRyhXtiXiHdozLlnSq-fke7WjPJel405yjD6U8UUpF16odev0BYSSmFJiGAA5ncKuteshmPkIEnF68g_2cwmaiDz7CviTn1wlbk4f0sk2wHLeALYSwhlQARxOTTdOcil8AjynjXyksZqpg9rYG2HSIfvEp4jTiJW_zkuajiRiqs44nyOUjOhtNKHD5Vy_Q4-2Xh5uv5P773bebz_fEtqxfyMBBNkoO9WUhB2l7w6lTQJWoz_XQdkPdMiU6EBYsExVsOQjpwPWOgWsv0PXp7pzT8wpl0U9pzbFG6oY3qqVK9rxSzYmyOZWSYdRz9pPJm2ZU_65fn-rXtX79p34tqqk9mUqF4wHyv9P_cb0Bpn-Njg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2528308795</pqid></control><display><type>article</type><title>Self-assembled reduced graphene oxide/polyaniline/sodium carboxymethyl cellulose nanocomposite for voltammetric recognition of tryptophan enantiomers</title><source>SpringerLink Journals - AutoHoldings</source><creator>Chen, Fang ; Niu, Xiaohui ; Yang, Xing ; Pei, Hebing ; Guo, Ruibin ; Liu, Nijuan ; Mo, Zunli</creator><creatorcontrib>Chen, Fang ; Niu, Xiaohui ; Yang, Xing ; Pei, Hebing ; Guo, Ruibin ; Liu, Nijuan ; Mo, Zunli</creatorcontrib><description>A nanocomposite was synthesized from reduced graphene oxide (rGO), polyaniline (PANI), and carboxymethyl cellulose (CMC) as the initial materials by in situ polymerization. The substrate rGO provides many active sites for in situ polymerization of aniline and self-assembly of CMC. Scanning electron microscopy, X-ray diffraction, thermogravimetry, Raman, Infrared Spectroscopy, and X-ray photoelectron spectroscopies were used to characterize the morphology, electronic structure, and composition of different materials. The nanocomposite was used to modify a glassy carbon electrode (GCE) to obtain a sensor for chiral electrochemical recognition of tryptophan enantiomers. Their electrochemical properties and recognition abilities were investigated using cyclic voltammetry and differential pulse voltammetry, and the final consequence demonstrated that the modified GCE could well distinguish l -tryptophan and d -tryptophan. The enantiomeric selectivity is 2.26. The GCE was successfully used for the recognition of d -tryptophan and l -tryptophan in spiked serum and urine samples.</description><identifier>ISSN: 0957-4522</identifier><identifier>EISSN: 1573-482X</identifier><identifier>DOI: 10.1007/s10854-021-05809-6</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Aniline ; Carboxymethyl cellulose ; Cellulose ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Electrochemical analysis ; Electronic structure ; Electrons ; Enantiomers ; Glassy carbon ; Graphene ; Infrared spectroscopy ; Materials Science ; Morphology ; Nanocomposites ; Optical and Electronic Materials ; Photoelectrons ; Polyanilines ; Polymerization ; Recognition ; Selectivity ; Self-assembly ; Sodium carboxymethyl cellulose ; Substrates ; Thermogravimetry ; Tryptophan ; Voltammetry ; X ray photoelectron spectroscopy</subject><ispartof>Journal of materials science. Materials in electronics, 2021-05, Vol.32 (9), p.11791-11804</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-b5e7287b05867b7c9a50d8e0866439e34b2871864e6cec16b0535e67ded9d1ed3</citedby><cites>FETCH-LOGICAL-c319t-b5e7287b05867b7c9a50d8e0866439e34b2871864e6cec16b0535e67ded9d1ed3</cites><orcidid>0000-0002-6714-9155</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10854-021-05809-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10854-021-05809-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Chen, Fang</creatorcontrib><creatorcontrib>Niu, Xiaohui</creatorcontrib><creatorcontrib>Yang, Xing</creatorcontrib><creatorcontrib>Pei, Hebing</creatorcontrib><creatorcontrib>Guo, Ruibin</creatorcontrib><creatorcontrib>Liu, Nijuan</creatorcontrib><creatorcontrib>Mo, Zunli</creatorcontrib><title>Self-assembled reduced graphene oxide/polyaniline/sodium carboxymethyl cellulose nanocomposite for voltammetric recognition of tryptophan enantiomers</title><title>Journal of materials science. Materials in electronics</title><addtitle>J Mater Sci: Mater Electron</addtitle><description>A nanocomposite was synthesized from reduced graphene oxide (rGO), polyaniline (PANI), and carboxymethyl cellulose (CMC) as the initial materials by in situ polymerization. The substrate rGO provides many active sites for in situ polymerization of aniline and self-assembly of CMC. Scanning electron microscopy, X-ray diffraction, thermogravimetry, Raman, Infrared Spectroscopy, and X-ray photoelectron spectroscopies were used to characterize the morphology, electronic structure, and composition of different materials. The nanocomposite was used to modify a glassy carbon electrode (GCE) to obtain a sensor for chiral electrochemical recognition of tryptophan enantiomers. Their electrochemical properties and recognition abilities were investigated using cyclic voltammetry and differential pulse voltammetry, and the final consequence demonstrated that the modified GCE could well distinguish l -tryptophan and d -tryptophan. The enantiomeric selectivity is 2.26. The GCE was successfully used for the recognition of d -tryptophan and l -tryptophan in spiked serum and urine samples.</description><subject>Aniline</subject><subject>Carboxymethyl cellulose</subject><subject>Cellulose</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Electrochemical analysis</subject><subject>Electronic structure</subject><subject>Electrons</subject><subject>Enantiomers</subject><subject>Glassy carbon</subject><subject>Graphene</subject><subject>Infrared spectroscopy</subject><subject>Materials Science</subject><subject>Morphology</subject><subject>Nanocomposites</subject><subject>Optical and Electronic Materials</subject><subject>Photoelectrons</subject><subject>Polyanilines</subject><subject>Polymerization</subject><subject>Recognition</subject><subject>Selectivity</subject><subject>Self-assembly</subject><subject>Sodium carboxymethyl cellulose</subject><subject>Substrates</subject><subject>Thermogravimetry</subject><subject>Tryptophan</subject><subject>Voltammetry</subject><subject>X ray photoelectron spectroscopy</subject><issn>0957-4522</issn><issn>1573-482X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kM1q3TAQhUVpILdpXiArQdbqlWzrx8sSmrQQ6KIJdCdkaXyvgiw5kl3iB8n7Ru0tdNfVgZnvzGEOQleMfmKUyn1hVPGO0IYRyhXtiXiHdozLlnSq-fke7WjPJel405yjD6U8UUpF16odev0BYSSmFJiGAA5ncKuteshmPkIEnF68g_2cwmaiDz7CviTn1wlbk4f0sk2wHLeALYSwhlQARxOTTdOcil8AjynjXyksZqpg9rYG2HSIfvEp4jTiJW_zkuajiRiqs44nyOUjOhtNKHD5Vy_Q4-2Xh5uv5P773bebz_fEtqxfyMBBNkoO9WUhB2l7w6lTQJWoz_XQdkPdMiU6EBYsExVsOQjpwPWOgWsv0PXp7pzT8wpl0U9pzbFG6oY3qqVK9rxSzYmyOZWSYdRz9pPJm2ZU_65fn-rXtX79p34tqqk9mUqF4wHyv9P_cb0Bpn-Njg</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Chen, Fang</creator><creator>Niu, Xiaohui</creator><creator>Yang, Xing</creator><creator>Pei, Hebing</creator><creator>Guo, Ruibin</creator><creator>Liu, Nijuan</creator><creator>Mo, Zunli</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0002-6714-9155</orcidid></search><sort><creationdate>20210501</creationdate><title>Self-assembled reduced graphene oxide/polyaniline/sodium carboxymethyl cellulose nanocomposite for voltammetric recognition of tryptophan enantiomers</title><author>Chen, Fang ; Niu, Xiaohui ; Yang, Xing ; Pei, Hebing ; Guo, Ruibin ; Liu, Nijuan ; Mo, Zunli</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-b5e7287b05867b7c9a50d8e0866439e34b2871864e6cec16b0535e67ded9d1ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aniline</topic><topic>Carboxymethyl cellulose</topic><topic>Cellulose</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Electrochemical analysis</topic><topic>Electronic structure</topic><topic>Electrons</topic><topic>Enantiomers</topic><topic>Glassy carbon</topic><topic>Graphene</topic><topic>Infrared spectroscopy</topic><topic>Materials Science</topic><topic>Morphology</topic><topic>Nanocomposites</topic><topic>Optical and Electronic Materials</topic><topic>Photoelectrons</topic><topic>Polyanilines</topic><topic>Polymerization</topic><topic>Recognition</topic><topic>Selectivity</topic><topic>Self-assembly</topic><topic>Sodium carboxymethyl cellulose</topic><topic>Substrates</topic><topic>Thermogravimetry</topic><topic>Tryptophan</topic><topic>Voltammetry</topic><topic>X ray photoelectron spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Fang</creatorcontrib><creatorcontrib>Niu, Xiaohui</creatorcontrib><creatorcontrib>Yang, Xing</creatorcontrib><creatorcontrib>Pei, Hebing</creatorcontrib><creatorcontrib>Guo, Ruibin</creatorcontrib><creatorcontrib>Liu, Nijuan</creatorcontrib><creatorcontrib>Mo, Zunli</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Journal of materials science. Materials in electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Fang</au><au>Niu, Xiaohui</au><au>Yang, Xing</au><au>Pei, Hebing</au><au>Guo, Ruibin</au><au>Liu, Nijuan</au><au>Mo, Zunli</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self-assembled reduced graphene oxide/polyaniline/sodium carboxymethyl cellulose nanocomposite for voltammetric recognition of tryptophan enantiomers</atitle><jtitle>Journal of materials science. Materials in electronics</jtitle><stitle>J Mater Sci: Mater Electron</stitle><date>2021-05-01</date><risdate>2021</risdate><volume>32</volume><issue>9</issue><spage>11791</spage><epage>11804</epage><pages>11791-11804</pages><issn>0957-4522</issn><eissn>1573-482X</eissn><abstract>A nanocomposite was synthesized from reduced graphene oxide (rGO), polyaniline (PANI), and carboxymethyl cellulose (CMC) as the initial materials by in situ polymerization. The substrate rGO provides many active sites for in situ polymerization of aniline and self-assembly of CMC. Scanning electron microscopy, X-ray diffraction, thermogravimetry, Raman, Infrared Spectroscopy, and X-ray photoelectron spectroscopies were used to characterize the morphology, electronic structure, and composition of different materials. The nanocomposite was used to modify a glassy carbon electrode (GCE) to obtain a sensor for chiral electrochemical recognition of tryptophan enantiomers. Their electrochemical properties and recognition abilities were investigated using cyclic voltammetry and differential pulse voltammetry, and the final consequence demonstrated that the modified GCE could well distinguish l -tryptophan and d -tryptophan. The enantiomeric selectivity is 2.26. The GCE was successfully used for the recognition of d -tryptophan and l -tryptophan in spiked serum and urine samples.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10854-021-05809-6</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-6714-9155</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0957-4522
ispartof Journal of materials science. Materials in electronics, 2021-05, Vol.32 (9), p.11791-11804
issn 0957-4522
1573-482X
language eng
recordid cdi_proquest_journals_2528308795
source SpringerLink Journals - AutoHoldings
subjects Aniline
Carboxymethyl cellulose
Cellulose
Characterization and Evaluation of Materials
Chemistry and Materials Science
Electrochemical analysis
Electronic structure
Electrons
Enantiomers
Glassy carbon
Graphene
Infrared spectroscopy
Materials Science
Morphology
Nanocomposites
Optical and Electronic Materials
Photoelectrons
Polyanilines
Polymerization
Recognition
Selectivity
Self-assembly
Sodium carboxymethyl cellulose
Substrates
Thermogravimetry
Tryptophan
Voltammetry
X ray photoelectron spectroscopy
title Self-assembled reduced graphene oxide/polyaniline/sodium carboxymethyl cellulose nanocomposite for voltammetric recognition of tryptophan enantiomers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T23%3A50%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self-assembled%20reduced%20graphene%20oxide/polyaniline/sodium%20carboxymethyl%20cellulose%20nanocomposite%20for%20voltammetric%20recognition%20of%20tryptophan%20enantiomers&rft.jtitle=Journal%20of%20materials%20science.%20Materials%20in%20electronics&rft.au=Chen,%20Fang&rft.date=2021-05-01&rft.volume=32&rft.issue=9&rft.spage=11791&rft.epage=11804&rft.pages=11791-11804&rft.issn=0957-4522&rft.eissn=1573-482X&rft_id=info:doi/10.1007/s10854-021-05809-6&rft_dat=%3Cproquest_cross%3E2528308795%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2528308795&rft_id=info:pmid/&rfr_iscdi=true