Multihop Neighbor Information Fusion Graph Convolutional Network for Text Classification
Graph convolutional network (GCN) is an efficient network for learning graph representations. However, it costs expensive to learn the high-order interaction relationships of the node neighbor. In this paper, we propose a novel graph convolutional model to learn and fuse multihop neighbor informatio...
Gespeichert in:
Veröffentlicht in: | Mathematical problems in engineering 2021, Vol.2021, p.1-9 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | Mathematical problems in engineering |
container_volume | 2021 |
creator | Lei, Fangyuan Liu, Xun Li, Zhengming Dai, Qingyun Wang, Senhong |
description | Graph convolutional network (GCN) is an efficient network for learning graph representations. However, it costs expensive to learn the high-order interaction relationships of the node neighbor. In this paper, we propose a novel graph convolutional model to learn and fuse multihop neighbor information relationships. We adopt the weight-sharing mechanism to design different order graph convolutions for avoiding the potential concerns of overfitting. Moreover, we design a new multihop neighbor information fusion (MIF) operator which mixes different neighbor features from 1-hop to k-hops. We theoretically analyse the computational complexity and the number of trainable parameters of our models. Experiment on text networks shows that the proposed models achieve state-of-the-art performance than the text GCN. |
doi_str_mv | 10.1155/2021/6665588 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2527980903</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2527980903</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-6df94cb59c2e3e467741868170d7175e81fe425cd03d546cde9c7b263caa49953</originalsourceid><addsrcrecordid>eNp90D1PwzAQBmALgUQpbPyASIwQ6m_HI4poqVRgKVK3yHEc4pLGwU4o_HsS2pnpTrrnTqcXgGsE7xFibIYhRjPOOWNJcgImiHESM0TF6dBDTGOEyeYcXISwhYNkKJmAzXNfd7ZybfRi7HuVOx8tm9L5neqsa6J5H8ay8KqtotQ1X67ux4GqB9_tnf-IBhytzXcXpbUKwZZW_61egrNS1cFcHesUvM0f1-lTvHpdLNOHVawJEV3Mi1JSnTOpsSGGciEoSniCBCwEEswkqDQUM11AUjDKdWGkFjnmRCtFpWRkCm4Od1vvPnsTumzrej88GDLMsJAJlJAM6u6gtHcheFNmrbc75X8yBLMxu2zMLjtmN_DbA69sU6i9_V__Anuibn0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2527980903</pqid></control><display><type>article</type><title>Multihop Neighbor Information Fusion Graph Convolutional Network for Text Classification</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley Online Library (Open Access Collection)</source><source>Alma/SFX Local Collection</source><creator>Lei, Fangyuan ; Liu, Xun ; Li, Zhengming ; Dai, Qingyun ; Wang, Senhong</creator><contributor>Semaničová-Feňovčíková, Andrea ; Andrea Semaničová-Feňovčíková</contributor><creatorcontrib>Lei, Fangyuan ; Liu, Xun ; Li, Zhengming ; Dai, Qingyun ; Wang, Senhong ; Semaničová-Feňovčíková, Andrea ; Andrea Semaničová-Feňovčíková</creatorcontrib><description>Graph convolutional network (GCN) is an efficient network for learning graph representations. However, it costs expensive to learn the high-order interaction relationships of the node neighbor. In this paper, we propose a novel graph convolutional model to learn and fuse multihop neighbor information relationships. We adopt the weight-sharing mechanism to design different order graph convolutions for avoiding the potential concerns of overfitting. Moreover, we design a new multihop neighbor information fusion (MIF) operator which mixes different neighbor features from 1-hop to k-hops. We theoretically analyse the computational complexity and the number of trainable parameters of our models. Experiment on text networks shows that the proposed models achieve state-of-the-art performance than the text GCN.</description><identifier>ISSN: 1024-123X</identifier><identifier>EISSN: 1563-5147</identifier><identifier>DOI: 10.1155/2021/6665588</identifier><language>eng</language><publisher>New York: Hindawi</publisher><subject>Artificial neural networks ; Classification ; Data integration ; Deep learning ; Graphical representations ; Mathematical problems ; Neural networks ; Propagation ; Text categorization</subject><ispartof>Mathematical problems in engineering, 2021, Vol.2021, p.1-9</ispartof><rights>Copyright © 2021 Fangyuan Lei et al.</rights><rights>Copyright © 2021 Fangyuan Lei et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-6df94cb59c2e3e467741868170d7175e81fe425cd03d546cde9c7b263caa49953</citedby><cites>FETCH-LOGICAL-c337t-6df94cb59c2e3e467741868170d7175e81fe425cd03d546cde9c7b263caa49953</cites><orcidid>0000-0002-7561-3704 ; 0000-0003-0368-7971 ; 0000-0002-7062-3233 ; 0000-0002-2059-8818 ; 0000-0001-7330-8864</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids></links><search><contributor>Semaničová-Feňovčíková, Andrea</contributor><contributor>Andrea Semaničová-Feňovčíková</contributor><creatorcontrib>Lei, Fangyuan</creatorcontrib><creatorcontrib>Liu, Xun</creatorcontrib><creatorcontrib>Li, Zhengming</creatorcontrib><creatorcontrib>Dai, Qingyun</creatorcontrib><creatorcontrib>Wang, Senhong</creatorcontrib><title>Multihop Neighbor Information Fusion Graph Convolutional Network for Text Classification</title><title>Mathematical problems in engineering</title><description>Graph convolutional network (GCN) is an efficient network for learning graph representations. However, it costs expensive to learn the high-order interaction relationships of the node neighbor. In this paper, we propose a novel graph convolutional model to learn and fuse multihop neighbor information relationships. We adopt the weight-sharing mechanism to design different order graph convolutions for avoiding the potential concerns of overfitting. Moreover, we design a new multihop neighbor information fusion (MIF) operator which mixes different neighbor features from 1-hop to k-hops. We theoretically analyse the computational complexity and the number of trainable parameters of our models. Experiment on text networks shows that the proposed models achieve state-of-the-art performance than the text GCN.</description><subject>Artificial neural networks</subject><subject>Classification</subject><subject>Data integration</subject><subject>Deep learning</subject><subject>Graphical representations</subject><subject>Mathematical problems</subject><subject>Neural networks</subject><subject>Propagation</subject><subject>Text categorization</subject><issn>1024-123X</issn><issn>1563-5147</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp90D1PwzAQBmALgUQpbPyASIwQ6m_HI4poqVRgKVK3yHEc4pLGwU4o_HsS2pnpTrrnTqcXgGsE7xFibIYhRjPOOWNJcgImiHESM0TF6dBDTGOEyeYcXISwhYNkKJmAzXNfd7ZybfRi7HuVOx8tm9L5neqsa6J5H8ay8KqtotQ1X67ux4GqB9_tnf-IBhytzXcXpbUKwZZW_61egrNS1cFcHesUvM0f1-lTvHpdLNOHVawJEV3Mi1JSnTOpsSGGciEoSniCBCwEEswkqDQUM11AUjDKdWGkFjnmRCtFpWRkCm4Od1vvPnsTumzrej88GDLMsJAJlJAM6u6gtHcheFNmrbc75X8yBLMxu2zMLjtmN_DbA69sU6i9_V__Anuibn0</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Lei, Fangyuan</creator><creator>Liu, Xun</creator><creator>Li, Zhengming</creator><creator>Dai, Qingyun</creator><creator>Wang, Senhong</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-7561-3704</orcidid><orcidid>https://orcid.org/0000-0003-0368-7971</orcidid><orcidid>https://orcid.org/0000-0002-7062-3233</orcidid><orcidid>https://orcid.org/0000-0002-2059-8818</orcidid><orcidid>https://orcid.org/0000-0001-7330-8864</orcidid></search><sort><creationdate>2021</creationdate><title>Multihop Neighbor Information Fusion Graph Convolutional Network for Text Classification</title><author>Lei, Fangyuan ; Liu, Xun ; Li, Zhengming ; Dai, Qingyun ; Wang, Senhong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-6df94cb59c2e3e467741868170d7175e81fe425cd03d546cde9c7b263caa49953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Artificial neural networks</topic><topic>Classification</topic><topic>Data integration</topic><topic>Deep learning</topic><topic>Graphical representations</topic><topic>Mathematical problems</topic><topic>Neural networks</topic><topic>Propagation</topic><topic>Text categorization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lei, Fangyuan</creatorcontrib><creatorcontrib>Liu, Xun</creatorcontrib><creatorcontrib>Li, Zhengming</creatorcontrib><creatorcontrib>Dai, Qingyun</creatorcontrib><creatorcontrib>Wang, Senhong</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Mathematical problems in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lei, Fangyuan</au><au>Liu, Xun</au><au>Li, Zhengming</au><au>Dai, Qingyun</au><au>Wang, Senhong</au><au>Semaničová-Feňovčíková, Andrea</au><au>Andrea Semaničová-Feňovčíková</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multihop Neighbor Information Fusion Graph Convolutional Network for Text Classification</atitle><jtitle>Mathematical problems in engineering</jtitle><date>2021</date><risdate>2021</risdate><volume>2021</volume><spage>1</spage><epage>9</epage><pages>1-9</pages><issn>1024-123X</issn><eissn>1563-5147</eissn><abstract>Graph convolutional network (GCN) is an efficient network for learning graph representations. However, it costs expensive to learn the high-order interaction relationships of the node neighbor. In this paper, we propose a novel graph convolutional model to learn and fuse multihop neighbor information relationships. We adopt the weight-sharing mechanism to design different order graph convolutions for avoiding the potential concerns of overfitting. Moreover, we design a new multihop neighbor information fusion (MIF) operator which mixes different neighbor features from 1-hop to k-hops. We theoretically analyse the computational complexity and the number of trainable parameters of our models. Experiment on text networks shows that the proposed models achieve state-of-the-art performance than the text GCN.</abstract><cop>New York</cop><pub>Hindawi</pub><doi>10.1155/2021/6665588</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-7561-3704</orcidid><orcidid>https://orcid.org/0000-0003-0368-7971</orcidid><orcidid>https://orcid.org/0000-0002-7062-3233</orcidid><orcidid>https://orcid.org/0000-0002-2059-8818</orcidid><orcidid>https://orcid.org/0000-0001-7330-8864</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1024-123X |
ispartof | Mathematical problems in engineering, 2021, Vol.2021, p.1-9 |
issn | 1024-123X 1563-5147 |
language | eng |
recordid | cdi_proquest_journals_2527980903 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley Online Library (Open Access Collection); Alma/SFX Local Collection |
subjects | Artificial neural networks Classification Data integration Deep learning Graphical representations Mathematical problems Neural networks Propagation Text categorization |
title | Multihop Neighbor Information Fusion Graph Convolutional Network for Text Classification |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T13%3A34%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multihop%20Neighbor%20Information%20Fusion%20Graph%20Convolutional%20Network%20for%20Text%20Classification&rft.jtitle=Mathematical%20problems%20in%20engineering&rft.au=Lei,%20Fangyuan&rft.date=2021&rft.volume=2021&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.issn=1024-123X&rft.eissn=1563-5147&rft_id=info:doi/10.1155/2021/6665588&rft_dat=%3Cproquest_cross%3E2527980903%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2527980903&rft_id=info:pmid/&rfr_iscdi=true |