A characterization of trace-zero sets realizable by compensation in the SNIEP

The symmetric nonnegative inverse eigenvalue problem (SNIEP) is the problem of characterizing all possible spectra of entry-wise nonnegative symmetric matrices of given dimension. A list of real numbers is said to be symmetrically realizable if it is the spectrum of some nonnegative symmetric matrix...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Linear algebra and its applications 2021-04, Vol.615, p.42-76
Hauptverfasser: Marijuán, Carlos, Moro, Julio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 76
container_issue
container_start_page 42
container_title Linear algebra and its applications
container_volume 615
creator Marijuán, Carlos
Moro, Julio
description The symmetric nonnegative inverse eigenvalue problem (SNIEP) is the problem of characterizing all possible spectra of entry-wise nonnegative symmetric matrices of given dimension. A list of real numbers is said to be symmetrically realizable if it is the spectrum of some nonnegative symmetric matrix. One of the most general sufficient conditions for realizability is so-called C-realizability, which amounts to some kind of compensation between positive and negative entries of the list. In this paper we present a combinatorial characterization of C-realizable lists with zero sum, together with explicit formulas for C-realizable lists having at most four positive entries. One of the consequences of this characterization is that the set of zero-sum C-realizable lists is shown to be a union of polyhedral cones whose faces are described by equations involving only linear combinations with coefficients 1 and −1 of the entries in the list.
doi_str_mv 10.1016/j.laa.2020.12.021
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2527606614</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0024379520305887</els_id><sourcerecordid>2527606614</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-1934787575f51911723aee9c88a3338a7d2024829fbf7a95a78595603c00f0983</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKs_wFvA89Z8bDYJnkqpWqgfoJ5Dms7SXbabmqRC--tNWc-ehpl53_l4ELqlZEIJre7bSWfthBGWczYhjJ6hEVWSF1SJ6hyNCGFlwaUWl-gqxpYQUkrCRuhlit3GBusShOZoU-N77GuccgWKIwSPI6SIA9gut1cd4NUBO7_dQR8HddPjtAH88bqYv1-ji9p2EW7-4hh9Pc4_Z8_F8u1pMZsuC8eZSAXVvJRKCilqQTWlknELoJ1SlnOurFznR0rFdL2qpdXCSiW0qAh3hNREKz5Gd8PcXfDfe4jJtH4f-rzSMMFkRaqKlllFB5ULPsYAtdmFZmvDwVBiTtRMazI1c6JmKDOZWvY8DB7I5_80EEx0DfQO1k0Al8zaN_-4fwGpHnJR</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2527606614</pqid></control><display><type>article</type><title>A characterization of trace-zero sets realizable by compensation in the SNIEP</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Marijuán, Carlos ; Moro, Julio</creator><creatorcontrib>Marijuán, Carlos ; Moro, Julio</creatorcontrib><description>The symmetric nonnegative inverse eigenvalue problem (SNIEP) is the problem of characterizing all possible spectra of entry-wise nonnegative symmetric matrices of given dimension. A list of real numbers is said to be symmetrically realizable if it is the spectrum of some nonnegative symmetric matrix. One of the most general sufficient conditions for realizability is so-called C-realizability, which amounts to some kind of compensation between positive and negative entries of the list. In this paper we present a combinatorial characterization of C-realizable lists with zero sum, together with explicit formulas for C-realizable lists having at most four positive entries. One of the consequences of this characterization is that the set of zero-sum C-realizable lists is shown to be a union of polyhedral cones whose faces are described by equations involving only linear combinations with coefficients 1 and −1 of the entries in the list.</description><identifier>ISSN: 0024-3795</identifier><identifier>EISSN: 1873-1856</identifier><identifier>DOI: 10.1016/j.laa.2020.12.021</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>C-realizability ; Combinatorial analysis ; Compensation ; Cones ; Eigenvalues ; Linear algebra ; Lists ; Mathematical analysis ; Matrix methods ; Real numbers ; Realizability ; Symmetric nonnegative inverse eigenvalue problem ; Symmetric nonnegative matrix</subject><ispartof>Linear algebra and its applications, 2021-04, Vol.615, p.42-76</ispartof><rights>2020 Elsevier Inc.</rights><rights>Copyright American Elsevier Company, Inc. Apr 15, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-1934787575f51911723aee9c88a3338a7d2024829fbf7a95a78595603c00f0983</citedby><cites>FETCH-LOGICAL-c325t-1934787575f51911723aee9c88a3338a7d2024829fbf7a95a78595603c00f0983</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.laa.2020.12.021$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Marijuán, Carlos</creatorcontrib><creatorcontrib>Moro, Julio</creatorcontrib><title>A characterization of trace-zero sets realizable by compensation in the SNIEP</title><title>Linear algebra and its applications</title><description>The symmetric nonnegative inverse eigenvalue problem (SNIEP) is the problem of characterizing all possible spectra of entry-wise nonnegative symmetric matrices of given dimension. A list of real numbers is said to be symmetrically realizable if it is the spectrum of some nonnegative symmetric matrix. One of the most general sufficient conditions for realizability is so-called C-realizability, which amounts to some kind of compensation between positive and negative entries of the list. In this paper we present a combinatorial characterization of C-realizable lists with zero sum, together with explicit formulas for C-realizable lists having at most four positive entries. One of the consequences of this characterization is that the set of zero-sum C-realizable lists is shown to be a union of polyhedral cones whose faces are described by equations involving only linear combinations with coefficients 1 and −1 of the entries in the list.</description><subject>C-realizability</subject><subject>Combinatorial analysis</subject><subject>Compensation</subject><subject>Cones</subject><subject>Eigenvalues</subject><subject>Linear algebra</subject><subject>Lists</subject><subject>Mathematical analysis</subject><subject>Matrix methods</subject><subject>Real numbers</subject><subject>Realizability</subject><subject>Symmetric nonnegative inverse eigenvalue problem</subject><subject>Symmetric nonnegative matrix</subject><issn>0024-3795</issn><issn>1873-1856</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKs_wFvA89Z8bDYJnkqpWqgfoJ5Dms7SXbabmqRC--tNWc-ehpl53_l4ELqlZEIJre7bSWfthBGWczYhjJ6hEVWSF1SJ6hyNCGFlwaUWl-gqxpYQUkrCRuhlit3GBusShOZoU-N77GuccgWKIwSPI6SIA9gut1cd4NUBO7_dQR8HddPjtAH88bqYv1-ji9p2EW7-4hh9Pc4_Z8_F8u1pMZsuC8eZSAXVvJRKCilqQTWlknELoJ1SlnOurFznR0rFdL2qpdXCSiW0qAh3hNREKz5Gd8PcXfDfe4jJtH4f-rzSMMFkRaqKlllFB5ULPsYAtdmFZmvDwVBiTtRMazI1c6JmKDOZWvY8DB7I5_80EEx0DfQO1k0Al8zaN_-4fwGpHnJR</recordid><startdate>20210415</startdate><enddate>20210415</enddate><creator>Marijuán, Carlos</creator><creator>Moro, Julio</creator><general>Elsevier Inc</general><general>American Elsevier Company, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20210415</creationdate><title>A characterization of trace-zero sets realizable by compensation in the SNIEP</title><author>Marijuán, Carlos ; Moro, Julio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-1934787575f51911723aee9c88a3338a7d2024829fbf7a95a78595603c00f0983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>C-realizability</topic><topic>Combinatorial analysis</topic><topic>Compensation</topic><topic>Cones</topic><topic>Eigenvalues</topic><topic>Linear algebra</topic><topic>Lists</topic><topic>Mathematical analysis</topic><topic>Matrix methods</topic><topic>Real numbers</topic><topic>Realizability</topic><topic>Symmetric nonnegative inverse eigenvalue problem</topic><topic>Symmetric nonnegative matrix</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marijuán, Carlos</creatorcontrib><creatorcontrib>Moro, Julio</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Linear algebra and its applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marijuán, Carlos</au><au>Moro, Julio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A characterization of trace-zero sets realizable by compensation in the SNIEP</atitle><jtitle>Linear algebra and its applications</jtitle><date>2021-04-15</date><risdate>2021</risdate><volume>615</volume><spage>42</spage><epage>76</epage><pages>42-76</pages><issn>0024-3795</issn><eissn>1873-1856</eissn><abstract>The symmetric nonnegative inverse eigenvalue problem (SNIEP) is the problem of characterizing all possible spectra of entry-wise nonnegative symmetric matrices of given dimension. A list of real numbers is said to be symmetrically realizable if it is the spectrum of some nonnegative symmetric matrix. One of the most general sufficient conditions for realizability is so-called C-realizability, which amounts to some kind of compensation between positive and negative entries of the list. In this paper we present a combinatorial characterization of C-realizable lists with zero sum, together with explicit formulas for C-realizable lists having at most four positive entries. One of the consequences of this characterization is that the set of zero-sum C-realizable lists is shown to be a union of polyhedral cones whose faces are described by equations involving only linear combinations with coefficients 1 and −1 of the entries in the list.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><doi>10.1016/j.laa.2020.12.021</doi><tpages>35</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0024-3795
ispartof Linear algebra and its applications, 2021-04, Vol.615, p.42-76
issn 0024-3795
1873-1856
language eng
recordid cdi_proquest_journals_2527606614
source ScienceDirect Journals (5 years ago - present)
subjects C-realizability
Combinatorial analysis
Compensation
Cones
Eigenvalues
Linear algebra
Lists
Mathematical analysis
Matrix methods
Real numbers
Realizability
Symmetric nonnegative inverse eigenvalue problem
Symmetric nonnegative matrix
title A characterization of trace-zero sets realizable by compensation in the SNIEP
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T01%3A04%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20characterization%20of%20trace-zero%20sets%20realizable%20by%20compensation%20in%20the%20SNIEP&rft.jtitle=Linear%20algebra%20and%20its%20applications&rft.au=Mariju%C3%A1n,%20Carlos&rft.date=2021-04-15&rft.volume=615&rft.spage=42&rft.epage=76&rft.pages=42-76&rft.issn=0024-3795&rft.eissn=1873-1856&rft_id=info:doi/10.1016/j.laa.2020.12.021&rft_dat=%3Cproquest_cross%3E2527606614%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2527606614&rft_id=info:pmid/&rft_els_id=S0024379520305887&rfr_iscdi=true