A characterization of trace-zero sets realizable by compensation in the SNIEP
The symmetric nonnegative inverse eigenvalue problem (SNIEP) is the problem of characterizing all possible spectra of entry-wise nonnegative symmetric matrices of given dimension. A list of real numbers is said to be symmetrically realizable if it is the spectrum of some nonnegative symmetric matrix...
Gespeichert in:
Veröffentlicht in: | Linear algebra and its applications 2021-04, Vol.615, p.42-76 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 76 |
---|---|
container_issue | |
container_start_page | 42 |
container_title | Linear algebra and its applications |
container_volume | 615 |
creator | Marijuán, Carlos Moro, Julio |
description | The symmetric nonnegative inverse eigenvalue problem (SNIEP) is the problem of characterizing all possible spectra of entry-wise nonnegative symmetric matrices of given dimension. A list of real numbers is said to be symmetrically realizable if it is the spectrum of some nonnegative symmetric matrix. One of the most general sufficient conditions for realizability is so-called C-realizability, which amounts to some kind of compensation between positive and negative entries of the list. In this paper we present a combinatorial characterization of C-realizable lists with zero sum, together with explicit formulas for C-realizable lists having at most four positive entries. One of the consequences of this characterization is that the set of zero-sum C-realizable lists is shown to be a union of polyhedral cones whose faces are described by equations involving only linear combinations with coefficients 1 and −1 of the entries in the list. |
doi_str_mv | 10.1016/j.laa.2020.12.021 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2527606614</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0024379520305887</els_id><sourcerecordid>2527606614</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-1934787575f51911723aee9c88a3338a7d2024829fbf7a95a78595603c00f0983</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKs_wFvA89Z8bDYJnkqpWqgfoJ5Dms7SXbabmqRC--tNWc-ehpl53_l4ELqlZEIJre7bSWfthBGWczYhjJ6hEVWSF1SJ6hyNCGFlwaUWl-gqxpYQUkrCRuhlit3GBusShOZoU-N77GuccgWKIwSPI6SIA9gut1cd4NUBO7_dQR8HddPjtAH88bqYv1-ji9p2EW7-4hh9Pc4_Z8_F8u1pMZsuC8eZSAXVvJRKCilqQTWlknELoJ1SlnOurFznR0rFdL2qpdXCSiW0qAh3hNREKz5Gd8PcXfDfe4jJtH4f-rzSMMFkRaqKlllFB5ULPsYAtdmFZmvDwVBiTtRMazI1c6JmKDOZWvY8DB7I5_80EEx0DfQO1k0Al8zaN_-4fwGpHnJR</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2527606614</pqid></control><display><type>article</type><title>A characterization of trace-zero sets realizable by compensation in the SNIEP</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Marijuán, Carlos ; Moro, Julio</creator><creatorcontrib>Marijuán, Carlos ; Moro, Julio</creatorcontrib><description>The symmetric nonnegative inverse eigenvalue problem (SNIEP) is the problem of characterizing all possible spectra of entry-wise nonnegative symmetric matrices of given dimension. A list of real numbers is said to be symmetrically realizable if it is the spectrum of some nonnegative symmetric matrix. One of the most general sufficient conditions for realizability is so-called C-realizability, which amounts to some kind of compensation between positive and negative entries of the list. In this paper we present a combinatorial characterization of C-realizable lists with zero sum, together with explicit formulas for C-realizable lists having at most four positive entries. One of the consequences of this characterization is that the set of zero-sum C-realizable lists is shown to be a union of polyhedral cones whose faces are described by equations involving only linear combinations with coefficients 1 and −1 of the entries in the list.</description><identifier>ISSN: 0024-3795</identifier><identifier>EISSN: 1873-1856</identifier><identifier>DOI: 10.1016/j.laa.2020.12.021</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>C-realizability ; Combinatorial analysis ; Compensation ; Cones ; Eigenvalues ; Linear algebra ; Lists ; Mathematical analysis ; Matrix methods ; Real numbers ; Realizability ; Symmetric nonnegative inverse eigenvalue problem ; Symmetric nonnegative matrix</subject><ispartof>Linear algebra and its applications, 2021-04, Vol.615, p.42-76</ispartof><rights>2020 Elsevier Inc.</rights><rights>Copyright American Elsevier Company, Inc. Apr 15, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-1934787575f51911723aee9c88a3338a7d2024829fbf7a95a78595603c00f0983</citedby><cites>FETCH-LOGICAL-c325t-1934787575f51911723aee9c88a3338a7d2024829fbf7a95a78595603c00f0983</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.laa.2020.12.021$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Marijuán, Carlos</creatorcontrib><creatorcontrib>Moro, Julio</creatorcontrib><title>A characterization of trace-zero sets realizable by compensation in the SNIEP</title><title>Linear algebra and its applications</title><description>The symmetric nonnegative inverse eigenvalue problem (SNIEP) is the problem of characterizing all possible spectra of entry-wise nonnegative symmetric matrices of given dimension. A list of real numbers is said to be symmetrically realizable if it is the spectrum of some nonnegative symmetric matrix. One of the most general sufficient conditions for realizability is so-called C-realizability, which amounts to some kind of compensation between positive and negative entries of the list. In this paper we present a combinatorial characterization of C-realizable lists with zero sum, together with explicit formulas for C-realizable lists having at most four positive entries. One of the consequences of this characterization is that the set of zero-sum C-realizable lists is shown to be a union of polyhedral cones whose faces are described by equations involving only linear combinations with coefficients 1 and −1 of the entries in the list.</description><subject>C-realizability</subject><subject>Combinatorial analysis</subject><subject>Compensation</subject><subject>Cones</subject><subject>Eigenvalues</subject><subject>Linear algebra</subject><subject>Lists</subject><subject>Mathematical analysis</subject><subject>Matrix methods</subject><subject>Real numbers</subject><subject>Realizability</subject><subject>Symmetric nonnegative inverse eigenvalue problem</subject><subject>Symmetric nonnegative matrix</subject><issn>0024-3795</issn><issn>1873-1856</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKs_wFvA89Z8bDYJnkqpWqgfoJ5Dms7SXbabmqRC--tNWc-ehpl53_l4ELqlZEIJre7bSWfthBGWczYhjJ6hEVWSF1SJ6hyNCGFlwaUWl-gqxpYQUkrCRuhlit3GBusShOZoU-N77GuccgWKIwSPI6SIA9gut1cd4NUBO7_dQR8HddPjtAH88bqYv1-ji9p2EW7-4hh9Pc4_Z8_F8u1pMZsuC8eZSAXVvJRKCilqQTWlknELoJ1SlnOurFznR0rFdL2qpdXCSiW0qAh3hNREKz5Gd8PcXfDfe4jJtH4f-rzSMMFkRaqKlllFB5ULPsYAtdmFZmvDwVBiTtRMazI1c6JmKDOZWvY8DB7I5_80EEx0DfQO1k0Al8zaN_-4fwGpHnJR</recordid><startdate>20210415</startdate><enddate>20210415</enddate><creator>Marijuán, Carlos</creator><creator>Moro, Julio</creator><general>Elsevier Inc</general><general>American Elsevier Company, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20210415</creationdate><title>A characterization of trace-zero sets realizable by compensation in the SNIEP</title><author>Marijuán, Carlos ; Moro, Julio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-1934787575f51911723aee9c88a3338a7d2024829fbf7a95a78595603c00f0983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>C-realizability</topic><topic>Combinatorial analysis</topic><topic>Compensation</topic><topic>Cones</topic><topic>Eigenvalues</topic><topic>Linear algebra</topic><topic>Lists</topic><topic>Mathematical analysis</topic><topic>Matrix methods</topic><topic>Real numbers</topic><topic>Realizability</topic><topic>Symmetric nonnegative inverse eigenvalue problem</topic><topic>Symmetric nonnegative matrix</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marijuán, Carlos</creatorcontrib><creatorcontrib>Moro, Julio</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Linear algebra and its applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marijuán, Carlos</au><au>Moro, Julio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A characterization of trace-zero sets realizable by compensation in the SNIEP</atitle><jtitle>Linear algebra and its applications</jtitle><date>2021-04-15</date><risdate>2021</risdate><volume>615</volume><spage>42</spage><epage>76</epage><pages>42-76</pages><issn>0024-3795</issn><eissn>1873-1856</eissn><abstract>The symmetric nonnegative inverse eigenvalue problem (SNIEP) is the problem of characterizing all possible spectra of entry-wise nonnegative symmetric matrices of given dimension. A list of real numbers is said to be symmetrically realizable if it is the spectrum of some nonnegative symmetric matrix. One of the most general sufficient conditions for realizability is so-called C-realizability, which amounts to some kind of compensation between positive and negative entries of the list. In this paper we present a combinatorial characterization of C-realizable lists with zero sum, together with explicit formulas for C-realizable lists having at most four positive entries. One of the consequences of this characterization is that the set of zero-sum C-realizable lists is shown to be a union of polyhedral cones whose faces are described by equations involving only linear combinations with coefficients 1 and −1 of the entries in the list.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><doi>10.1016/j.laa.2020.12.021</doi><tpages>35</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0024-3795 |
ispartof | Linear algebra and its applications, 2021-04, Vol.615, p.42-76 |
issn | 0024-3795 1873-1856 |
language | eng |
recordid | cdi_proquest_journals_2527606614 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | C-realizability Combinatorial analysis Compensation Cones Eigenvalues Linear algebra Lists Mathematical analysis Matrix methods Real numbers Realizability Symmetric nonnegative inverse eigenvalue problem Symmetric nonnegative matrix |
title | A characterization of trace-zero sets realizable by compensation in the SNIEP |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T01%3A04%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20characterization%20of%20trace-zero%20sets%20realizable%20by%20compensation%20in%20the%20SNIEP&rft.jtitle=Linear%20algebra%20and%20its%20applications&rft.au=Mariju%C3%A1n,%20Carlos&rft.date=2021-04-15&rft.volume=615&rft.spage=42&rft.epage=76&rft.pages=42-76&rft.issn=0024-3795&rft.eissn=1873-1856&rft_id=info:doi/10.1016/j.laa.2020.12.021&rft_dat=%3Cproquest_cross%3E2527606614%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2527606614&rft_id=info:pmid/&rft_els_id=S0024379520305887&rfr_iscdi=true |