Development of an optimal experimental model for predicting rock mass rating based on tunneling quality index

In initial phase of mining and civil projects, rock mass rating (RMR) and tunneling quality index (Q) classification systems are widely used. Because of specifying these values, it is possible to predict various rock mass characteristics, such as geomechanical parameters. Hence, many researchers dev...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of rock mechanics and mining sciences (Oxford, England : 1997) England : 1997), 2021-04, Vol.140, p.104602, Article 104602
1. Verfasser: Mohammadi, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 104602
container_title International journal of rock mechanics and mining sciences (Oxford, England : 1997)
container_volume 140
creator Mohammadi, M.
description In initial phase of mining and civil projects, rock mass rating (RMR) and tunneling quality index (Q) classification systems are widely used. Because of specifying these values, it is possible to predict various rock mass characteristics, such as geomechanical parameters. Hence, many researchers developed experimental models so that the RMR is obtained from Q. The predicted RMR is close to the real value in some domains of Q, but for some domains it is deviated from the real value. Therefore, designers are confused to choose the optimal results of the models. The purpose of this paper is to develop an optimal model for determining RMR various domains of Q. Hence, firstly, the performance of the previous models is evaluated in six different domains of Q and then the best models for each domain are selected. Using the simple regression method, an optimal experimental model is developed based on the selected model in each domain. For this purpose, 214 datasets in the available literatures are used. Root Mean Square Error (RMSE) and Mean Absolute Percentage Error (MAPE) indicators are used to evaluate the performance of the models. Investigations show that the results of the developed model are more reliable than the other models for all of the domains. Therefore, the proposed models can be used as general models in all domains.
doi_str_mv 10.1016/j.ijrmms.2020.104602
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2527602082</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1365160920309680</els_id><sourcerecordid>2527602082</sourcerecordid><originalsourceid>FETCH-LOGICAL-a357t-d64afdb99690f8bcad5f47b1ec544e403d22b470e270a4e65693858bb6e4af823</originalsourceid><addsrcrecordid>eNp9kE1PwzAMhisEEmPwDzhE4tyRpknaXpDQ-JQmcYFzlDYuSmmTLsmm7d-Trpw52X7t15afJLnN8CrDGb_vVrpzw-BXBJNJohyTs2SRlUWeUkbZecxzztKM4-oyufK-wxhzwotFMjzBHno7DmACsi2SBtkx6EH2CA4jOD01YjFYBT1qrUOjA6WboM03crb5QYP0Hjl5EmrpQSFrUNgZA_0kbXey1-GItFFwuE4uWtl7uPmLy-Tr5flz_ZZuPl7f14-bVOasCKniVLaqripe4basG6lYS4s6g4ZRChTnipCaFhhIgSUFzniVl6ysaw7RWJJ8mdzNe0dntzvwQXR250w8KQgjRcSDT1N0nmqc9d5BK8b4r3RHkWExgRWdmMGKCayYwUbbw2yD-MFegxO-0WCaiMVBE4Sy-v8Fv9ilhRw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2527602082</pqid></control><display><type>article</type><title>Development of an optimal experimental model for predicting rock mass rating based on tunneling quality index</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Mohammadi, M.</creator><creatorcontrib>Mohammadi, M.</creatorcontrib><description>In initial phase of mining and civil projects, rock mass rating (RMR) and tunneling quality index (Q) classification systems are widely used. Because of specifying these values, it is possible to predict various rock mass characteristics, such as geomechanical parameters. Hence, many researchers developed experimental models so that the RMR is obtained from Q. The predicted RMR is close to the real value in some domains of Q, but for some domains it is deviated from the real value. Therefore, designers are confused to choose the optimal results of the models. The purpose of this paper is to develop an optimal model for determining RMR various domains of Q. Hence, firstly, the performance of the previous models is evaluated in six different domains of Q and then the best models for each domain are selected. Using the simple regression method, an optimal experimental model is developed based on the selected model in each domain. For this purpose, 214 datasets in the available literatures are used. Root Mean Square Error (RMSE) and Mean Absolute Percentage Error (MAPE) indicators are used to evaluate the performance of the models. Investigations show that the results of the developed model are more reliable than the other models for all of the domains. Therefore, the proposed models can be used as general models in all domains.</description><identifier>ISSN: 1365-1609</identifier><identifier>EISSN: 1873-4545</identifier><identifier>DOI: 10.1016/j.ijrmms.2020.104602</identifier><language>eng</language><publisher>Berlin: Elsevier Ltd</publisher><subject>Classification systems ; Comparative study ; Domains ; Experimental model ; Geomechanics ; Performance evaluation ; RMR Prediction ; Rock mass ; Rock mass rating ; Rocks ; Root-mean-square errors ; Tunneling ; Tunneling quality index (Q system)</subject><ispartof>International journal of rock mechanics and mining sciences (Oxford, England : 1997), 2021-04, Vol.140, p.104602, Article 104602</ispartof><rights>2021 Elsevier Ltd</rights><rights>Copyright Elsevier BV Apr 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a357t-d64afdb99690f8bcad5f47b1ec544e403d22b470e270a4e65693858bb6e4af823</citedby><cites>FETCH-LOGICAL-a357t-d64afdb99690f8bcad5f47b1ec544e403d22b470e270a4e65693858bb6e4af823</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijrmms.2020.104602$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Mohammadi, M.</creatorcontrib><title>Development of an optimal experimental model for predicting rock mass rating based on tunneling quality index</title><title>International journal of rock mechanics and mining sciences (Oxford, England : 1997)</title><description>In initial phase of mining and civil projects, rock mass rating (RMR) and tunneling quality index (Q) classification systems are widely used. Because of specifying these values, it is possible to predict various rock mass characteristics, such as geomechanical parameters. Hence, many researchers developed experimental models so that the RMR is obtained from Q. The predicted RMR is close to the real value in some domains of Q, but for some domains it is deviated from the real value. Therefore, designers are confused to choose the optimal results of the models. The purpose of this paper is to develop an optimal model for determining RMR various domains of Q. Hence, firstly, the performance of the previous models is evaluated in six different domains of Q and then the best models for each domain are selected. Using the simple regression method, an optimal experimental model is developed based on the selected model in each domain. For this purpose, 214 datasets in the available literatures are used. Root Mean Square Error (RMSE) and Mean Absolute Percentage Error (MAPE) indicators are used to evaluate the performance of the models. Investigations show that the results of the developed model are more reliable than the other models for all of the domains. Therefore, the proposed models can be used as general models in all domains.</description><subject>Classification systems</subject><subject>Comparative study</subject><subject>Domains</subject><subject>Experimental model</subject><subject>Geomechanics</subject><subject>Performance evaluation</subject><subject>RMR Prediction</subject><subject>Rock mass</subject><subject>Rock mass rating</subject><subject>Rocks</subject><subject>Root-mean-square errors</subject><subject>Tunneling</subject><subject>Tunneling quality index (Q system)</subject><issn>1365-1609</issn><issn>1873-4545</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE1PwzAMhisEEmPwDzhE4tyRpknaXpDQ-JQmcYFzlDYuSmmTLsmm7d-Trpw52X7t15afJLnN8CrDGb_vVrpzw-BXBJNJohyTs2SRlUWeUkbZecxzztKM4-oyufK-wxhzwotFMjzBHno7DmACsi2SBtkx6EH2CA4jOD01YjFYBT1qrUOjA6WboM03crb5QYP0Hjl5EmrpQSFrUNgZA_0kbXey1-GItFFwuE4uWtl7uPmLy-Tr5flz_ZZuPl7f14-bVOasCKniVLaqripe4basG6lYS4s6g4ZRChTnipCaFhhIgSUFzniVl6ysaw7RWJJ8mdzNe0dntzvwQXR250w8KQgjRcSDT1N0nmqc9d5BK8b4r3RHkWExgRWdmMGKCayYwUbbw2yD-MFegxO-0WCaiMVBE4Sy-v8Fv9ilhRw</recordid><startdate>202104</startdate><enddate>202104</enddate><creator>Mohammadi, M.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>202104</creationdate><title>Development of an optimal experimental model for predicting rock mass rating based on tunneling quality index</title><author>Mohammadi, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a357t-d64afdb99690f8bcad5f47b1ec544e403d22b470e270a4e65693858bb6e4af823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Classification systems</topic><topic>Comparative study</topic><topic>Domains</topic><topic>Experimental model</topic><topic>Geomechanics</topic><topic>Performance evaluation</topic><topic>RMR Prediction</topic><topic>Rock mass</topic><topic>Rock mass rating</topic><topic>Rocks</topic><topic>Root-mean-square errors</topic><topic>Tunneling</topic><topic>Tunneling quality index (Q system)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mohammadi, M.</creatorcontrib><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>International journal of rock mechanics and mining sciences (Oxford, England : 1997)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mohammadi, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of an optimal experimental model for predicting rock mass rating based on tunneling quality index</atitle><jtitle>International journal of rock mechanics and mining sciences (Oxford, England : 1997)</jtitle><date>2021-04</date><risdate>2021</risdate><volume>140</volume><spage>104602</spage><pages>104602-</pages><artnum>104602</artnum><issn>1365-1609</issn><eissn>1873-4545</eissn><abstract>In initial phase of mining and civil projects, rock mass rating (RMR) and tunneling quality index (Q) classification systems are widely used. Because of specifying these values, it is possible to predict various rock mass characteristics, such as geomechanical parameters. Hence, many researchers developed experimental models so that the RMR is obtained from Q. The predicted RMR is close to the real value in some domains of Q, but for some domains it is deviated from the real value. Therefore, designers are confused to choose the optimal results of the models. The purpose of this paper is to develop an optimal model for determining RMR various domains of Q. Hence, firstly, the performance of the previous models is evaluated in six different domains of Q and then the best models for each domain are selected. Using the simple regression method, an optimal experimental model is developed based on the selected model in each domain. For this purpose, 214 datasets in the available literatures are used. Root Mean Square Error (RMSE) and Mean Absolute Percentage Error (MAPE) indicators are used to evaluate the performance of the models. Investigations show that the results of the developed model are more reliable than the other models for all of the domains. Therefore, the proposed models can be used as general models in all domains.</abstract><cop>Berlin</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijrmms.2020.104602</doi></addata></record>
fulltext fulltext
identifier ISSN: 1365-1609
ispartof International journal of rock mechanics and mining sciences (Oxford, England : 1997), 2021-04, Vol.140, p.104602, Article 104602
issn 1365-1609
1873-4545
language eng
recordid cdi_proquest_journals_2527602082
source Elsevier ScienceDirect Journals Complete
subjects Classification systems
Comparative study
Domains
Experimental model
Geomechanics
Performance evaluation
RMR Prediction
Rock mass
Rock mass rating
Rocks
Root-mean-square errors
Tunneling
Tunneling quality index (Q system)
title Development of an optimal experimental model for predicting rock mass rating based on tunneling quality index
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T07%3A05%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20an%20optimal%20experimental%20model%20for%20predicting%20rock%20mass%20rating%20based%20on%20tunneling%20quality%20index&rft.jtitle=International%20journal%20of%20rock%20mechanics%20and%20mining%20sciences%20(Oxford,%20England%20:%201997)&rft.au=Mohammadi,%20M.&rft.date=2021-04&rft.volume=140&rft.spage=104602&rft.pages=104602-&rft.artnum=104602&rft.issn=1365-1609&rft.eissn=1873-4545&rft_id=info:doi/10.1016/j.ijrmms.2020.104602&rft_dat=%3Cproquest_cross%3E2527602082%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2527602082&rft_id=info:pmid/&rft_els_id=S1365160920309680&rfr_iscdi=true