Development of an optimal experimental model for predicting rock mass rating based on tunneling quality index
In initial phase of mining and civil projects, rock mass rating (RMR) and tunneling quality index (Q) classification systems are widely used. Because of specifying these values, it is possible to predict various rock mass characteristics, such as geomechanical parameters. Hence, many researchers dev...
Gespeichert in:
Veröffentlicht in: | International journal of rock mechanics and mining sciences (Oxford, England : 1997) England : 1997), 2021-04, Vol.140, p.104602, Article 104602 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 104602 |
container_title | International journal of rock mechanics and mining sciences (Oxford, England : 1997) |
container_volume | 140 |
creator | Mohammadi, M. |
description | In initial phase of mining and civil projects, rock mass rating (RMR) and tunneling quality index (Q) classification systems are widely used. Because of specifying these values, it is possible to predict various rock mass characteristics, such as geomechanical parameters. Hence, many researchers developed experimental models so that the RMR is obtained from Q. The predicted RMR is close to the real value in some domains of Q, but for some domains it is deviated from the real value. Therefore, designers are confused to choose the optimal results of the models. The purpose of this paper is to develop an optimal model for determining RMR various domains of Q. Hence, firstly, the performance of the previous models is evaluated in six different domains of Q and then the best models for each domain are selected. Using the simple regression method, an optimal experimental model is developed based on the selected model in each domain. For this purpose, 214 datasets in the available literatures are used. Root Mean Square Error (RMSE) and Mean Absolute Percentage Error (MAPE) indicators are used to evaluate the performance of the models. Investigations show that the results of the developed model are more reliable than the other models for all of the domains. Therefore, the proposed models can be used as general models in all domains. |
doi_str_mv | 10.1016/j.ijrmms.2020.104602 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2527602082</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1365160920309680</els_id><sourcerecordid>2527602082</sourcerecordid><originalsourceid>FETCH-LOGICAL-a357t-d64afdb99690f8bcad5f47b1ec544e403d22b470e270a4e65693858bb6e4af823</originalsourceid><addsrcrecordid>eNp9kE1PwzAMhisEEmPwDzhE4tyRpknaXpDQ-JQmcYFzlDYuSmmTLsmm7d-Trpw52X7t15afJLnN8CrDGb_vVrpzw-BXBJNJohyTs2SRlUWeUkbZecxzztKM4-oyufK-wxhzwotFMjzBHno7DmACsi2SBtkx6EH2CA4jOD01YjFYBT1qrUOjA6WboM03crb5QYP0Hjl5EmrpQSFrUNgZA_0kbXey1-GItFFwuE4uWtl7uPmLy-Tr5flz_ZZuPl7f14-bVOasCKniVLaqripe4basG6lYS4s6g4ZRChTnipCaFhhIgSUFzniVl6ysaw7RWJJ8mdzNe0dntzvwQXR250w8KQgjRcSDT1N0nmqc9d5BK8b4r3RHkWExgRWdmMGKCayYwUbbw2yD-MFegxO-0WCaiMVBE4Sy-v8Fv9ilhRw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2527602082</pqid></control><display><type>article</type><title>Development of an optimal experimental model for predicting rock mass rating based on tunneling quality index</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Mohammadi, M.</creator><creatorcontrib>Mohammadi, M.</creatorcontrib><description>In initial phase of mining and civil projects, rock mass rating (RMR) and tunneling quality index (Q) classification systems are widely used. Because of specifying these values, it is possible to predict various rock mass characteristics, such as geomechanical parameters. Hence, many researchers developed experimental models so that the RMR is obtained from Q. The predicted RMR is close to the real value in some domains of Q, but for some domains it is deviated from the real value. Therefore, designers are confused to choose the optimal results of the models. The purpose of this paper is to develop an optimal model for determining RMR various domains of Q. Hence, firstly, the performance of the previous models is evaluated in six different domains of Q and then the best models for each domain are selected. Using the simple regression method, an optimal experimental model is developed based on the selected model in each domain. For this purpose, 214 datasets in the available literatures are used. Root Mean Square Error (RMSE) and Mean Absolute Percentage Error (MAPE) indicators are used to evaluate the performance of the models. Investigations show that the results of the developed model are more reliable than the other models for all of the domains. Therefore, the proposed models can be used as general models in all domains.</description><identifier>ISSN: 1365-1609</identifier><identifier>EISSN: 1873-4545</identifier><identifier>DOI: 10.1016/j.ijrmms.2020.104602</identifier><language>eng</language><publisher>Berlin: Elsevier Ltd</publisher><subject>Classification systems ; Comparative study ; Domains ; Experimental model ; Geomechanics ; Performance evaluation ; RMR Prediction ; Rock mass ; Rock mass rating ; Rocks ; Root-mean-square errors ; Tunneling ; Tunneling quality index (Q system)</subject><ispartof>International journal of rock mechanics and mining sciences (Oxford, England : 1997), 2021-04, Vol.140, p.104602, Article 104602</ispartof><rights>2021 Elsevier Ltd</rights><rights>Copyright Elsevier BV Apr 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a357t-d64afdb99690f8bcad5f47b1ec544e403d22b470e270a4e65693858bb6e4af823</citedby><cites>FETCH-LOGICAL-a357t-d64afdb99690f8bcad5f47b1ec544e403d22b470e270a4e65693858bb6e4af823</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijrmms.2020.104602$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Mohammadi, M.</creatorcontrib><title>Development of an optimal experimental model for predicting rock mass rating based on tunneling quality index</title><title>International journal of rock mechanics and mining sciences (Oxford, England : 1997)</title><description>In initial phase of mining and civil projects, rock mass rating (RMR) and tunneling quality index (Q) classification systems are widely used. Because of specifying these values, it is possible to predict various rock mass characteristics, such as geomechanical parameters. Hence, many researchers developed experimental models so that the RMR is obtained from Q. The predicted RMR is close to the real value in some domains of Q, but for some domains it is deviated from the real value. Therefore, designers are confused to choose the optimal results of the models. The purpose of this paper is to develop an optimal model for determining RMR various domains of Q. Hence, firstly, the performance of the previous models is evaluated in six different domains of Q and then the best models for each domain are selected. Using the simple regression method, an optimal experimental model is developed based on the selected model in each domain. For this purpose, 214 datasets in the available literatures are used. Root Mean Square Error (RMSE) and Mean Absolute Percentage Error (MAPE) indicators are used to evaluate the performance of the models. Investigations show that the results of the developed model are more reliable than the other models for all of the domains. Therefore, the proposed models can be used as general models in all domains.</description><subject>Classification systems</subject><subject>Comparative study</subject><subject>Domains</subject><subject>Experimental model</subject><subject>Geomechanics</subject><subject>Performance evaluation</subject><subject>RMR Prediction</subject><subject>Rock mass</subject><subject>Rock mass rating</subject><subject>Rocks</subject><subject>Root-mean-square errors</subject><subject>Tunneling</subject><subject>Tunneling quality index (Q system)</subject><issn>1365-1609</issn><issn>1873-4545</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE1PwzAMhisEEmPwDzhE4tyRpknaXpDQ-JQmcYFzlDYuSmmTLsmm7d-Trpw52X7t15afJLnN8CrDGb_vVrpzw-BXBJNJohyTs2SRlUWeUkbZecxzztKM4-oyufK-wxhzwotFMjzBHno7DmACsi2SBtkx6EH2CA4jOD01YjFYBT1qrUOjA6WboM03crb5QYP0Hjl5EmrpQSFrUNgZA_0kbXey1-GItFFwuE4uWtl7uPmLy-Tr5flz_ZZuPl7f14-bVOasCKniVLaqripe4basG6lYS4s6g4ZRChTnipCaFhhIgSUFzniVl6ysaw7RWJJ8mdzNe0dntzvwQXR250w8KQgjRcSDT1N0nmqc9d5BK8b4r3RHkWExgRWdmMGKCayYwUbbw2yD-MFegxO-0WCaiMVBE4Sy-v8Fv9ilhRw</recordid><startdate>202104</startdate><enddate>202104</enddate><creator>Mohammadi, M.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>202104</creationdate><title>Development of an optimal experimental model for predicting rock mass rating based on tunneling quality index</title><author>Mohammadi, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a357t-d64afdb99690f8bcad5f47b1ec544e403d22b470e270a4e65693858bb6e4af823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Classification systems</topic><topic>Comparative study</topic><topic>Domains</topic><topic>Experimental model</topic><topic>Geomechanics</topic><topic>Performance evaluation</topic><topic>RMR Prediction</topic><topic>Rock mass</topic><topic>Rock mass rating</topic><topic>Rocks</topic><topic>Root-mean-square errors</topic><topic>Tunneling</topic><topic>Tunneling quality index (Q system)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mohammadi, M.</creatorcontrib><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>International journal of rock mechanics and mining sciences (Oxford, England : 1997)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mohammadi, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of an optimal experimental model for predicting rock mass rating based on tunneling quality index</atitle><jtitle>International journal of rock mechanics and mining sciences (Oxford, England : 1997)</jtitle><date>2021-04</date><risdate>2021</risdate><volume>140</volume><spage>104602</spage><pages>104602-</pages><artnum>104602</artnum><issn>1365-1609</issn><eissn>1873-4545</eissn><abstract>In initial phase of mining and civil projects, rock mass rating (RMR) and tunneling quality index (Q) classification systems are widely used. Because of specifying these values, it is possible to predict various rock mass characteristics, such as geomechanical parameters. Hence, many researchers developed experimental models so that the RMR is obtained from Q. The predicted RMR is close to the real value in some domains of Q, but for some domains it is deviated from the real value. Therefore, designers are confused to choose the optimal results of the models. The purpose of this paper is to develop an optimal model for determining RMR various domains of Q. Hence, firstly, the performance of the previous models is evaluated in six different domains of Q and then the best models for each domain are selected. Using the simple regression method, an optimal experimental model is developed based on the selected model in each domain. For this purpose, 214 datasets in the available literatures are used. Root Mean Square Error (RMSE) and Mean Absolute Percentage Error (MAPE) indicators are used to evaluate the performance of the models. Investigations show that the results of the developed model are more reliable than the other models for all of the domains. Therefore, the proposed models can be used as general models in all domains.</abstract><cop>Berlin</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijrmms.2020.104602</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1365-1609 |
ispartof | International journal of rock mechanics and mining sciences (Oxford, England : 1997), 2021-04, Vol.140, p.104602, Article 104602 |
issn | 1365-1609 1873-4545 |
language | eng |
recordid | cdi_proquest_journals_2527602082 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Classification systems Comparative study Domains Experimental model Geomechanics Performance evaluation RMR Prediction Rock mass Rock mass rating Rocks Root-mean-square errors Tunneling Tunneling quality index (Q system) |
title | Development of an optimal experimental model for predicting rock mass rating based on tunneling quality index |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T07%3A05%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20an%20optimal%20experimental%20model%20for%20predicting%20rock%20mass%20rating%20based%20on%20tunneling%20quality%20index&rft.jtitle=International%20journal%20of%20rock%20mechanics%20and%20mining%20sciences%20(Oxford,%20England%20:%201997)&rft.au=Mohammadi,%20M.&rft.date=2021-04&rft.volume=140&rft.spage=104602&rft.pages=104602-&rft.artnum=104602&rft.issn=1365-1609&rft.eissn=1873-4545&rft_id=info:doi/10.1016/j.ijrmms.2020.104602&rft_dat=%3Cproquest_cross%3E2527602082%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2527602082&rft_id=info:pmid/&rft_els_id=S1365160920309680&rfr_iscdi=true |