Geometric Presentations of Braid Groups for Particles on a Graph

We study geometric presentations of braid groups for particles that are constrained to move on a graph, i.e. a network consisting of nodes and edges. Our proposed set of generators consists of exchanges of pairs of particles on junctions of the graph and of certain circular moves where one particle...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications in mathematical physics 2021-06, Vol.384 (2), p.1109-1140
Hauptverfasser: An, Byung Hee, Maciazek, Tomasz
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1140
container_issue 2
container_start_page 1109
container_title Communications in mathematical physics
container_volume 384
creator An, Byung Hee
Maciazek, Tomasz
description We study geometric presentations of braid groups for particles that are constrained to move on a graph, i.e. a network consisting of nodes and edges. Our proposed set of generators consists of exchanges of pairs of particles on junctions of the graph and of certain circular moves where one particle travels around a simple cycle of the graph. We point out that so defined generators often do not satisfy the braiding relation known from 2 D physics. We accomplish a full description of relations between the generators for star graphs where we derive certain quasi-braiding relations. We also describe how graph braid groups depend on the (graph-theoretic) connectivity of the graph. This is done in terms of quotients of graph braid groups where one-particle moves are put to identity. In particular, we show that for 3-connected planar graphs such a quotient reconstructs the well-known planar braid group. For 2-connected graphs this approach leads to generalisations of the Yang–Baxter equation. Our results are of particular relevance for the study of non-abelian anyons on networks showing new possibilities for non-abelian quantum statistics on graphs.
doi_str_mv 10.1007/s00220-021-04095-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2527576002</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2527576002</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-a934bab328dbd86a17ffdd0953d1e0ec9717df55c9a41fc561b4ce42c7fd0c503</originalsourceid><addsrcrecordid>eNp9kMtKAzEUhoMoWKsv4CrgOnqSTJLOTi22CgW70HXI5KJT2smYTKG-vdER3Lk6i_92-BC6pHBNAdRNBmAMCDBKoIJakMMRmtCKMwI1lcdoAkCBcEnlKTrLeQMANZNygm6XPu78kFqL18ln3w1maGOXcQz4PpnW4WWK-z7jEBNemzS0duuL2mFTFNO_n6OTYLbZX_zeKXpdPLzMH8nqefk0v1sRyyUfiKl51ZiGs5lr3EwaqkJwrnzKHfXgba2ockEIW5uKBiskbSrrK2ZVcGAF8Cm6Gnv7FD_2Pg96E_epK5OaCaaEkgVBcbHRZVPMOfmg-9TuTPrUFPQ3KT2S0oWU_iGlDyXEx1Au5u7Np7_qf1JfGjZr0A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2527576002</pqid></control><display><type>article</type><title>Geometric Presentations of Braid Groups for Particles on a Graph</title><source>Springer Nature - Complete Springer Journals</source><creator>An, Byung Hee ; Maciazek, Tomasz</creator><creatorcontrib>An, Byung Hee ; Maciazek, Tomasz</creatorcontrib><description>We study geometric presentations of braid groups for particles that are constrained to move on a graph, i.e. a network consisting of nodes and edges. Our proposed set of generators consists of exchanges of pairs of particles on junctions of the graph and of certain circular moves where one particle travels around a simple cycle of the graph. We point out that so defined generators often do not satisfy the braiding relation known from 2 D physics. We accomplish a full description of relations between the generators for star graphs where we derive certain quasi-braiding relations. We also describe how graph braid groups depend on the (graph-theoretic) connectivity of the graph. This is done in terms of quotients of graph braid groups where one-particle moves are put to identity. In particular, we show that for 3-connected planar graphs such a quotient reconstructs the well-known planar braid group. For 2-connected graphs this approach leads to generalisations of the Yang–Baxter equation. Our results are of particular relevance for the study of non-abelian anyons on networks showing new possibilities for non-abelian quantum statistics on graphs.</description><identifier>ISSN: 0010-3616</identifier><identifier>EISSN: 1432-0916</identifier><identifier>DOI: 10.1007/s00220-021-04095-x</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Braid theory ; Braiding ; Classical and Quantum Gravitation ; Complex Systems ; Generators ; Graph theory ; Graphs ; Mathematical and Computational Physics ; Mathematical Physics ; Physics ; Physics and Astronomy ; Quantum Physics ; Quantum statistics ; Quotients ; Relativity Theory ; Theoretical</subject><ispartof>Communications in mathematical physics, 2021-06, Vol.384 (2), p.1109-1140</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-a934bab328dbd86a17ffdd0953d1e0ec9717df55c9a41fc561b4ce42c7fd0c503</citedby><cites>FETCH-LOGICAL-c363t-a934bab328dbd86a17ffdd0953d1e0ec9717df55c9a41fc561b4ce42c7fd0c503</cites><orcidid>0000-0002-9232-6985</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00220-021-04095-x$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00220-021-04095-x$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>An, Byung Hee</creatorcontrib><creatorcontrib>Maciazek, Tomasz</creatorcontrib><title>Geometric Presentations of Braid Groups for Particles on a Graph</title><title>Communications in mathematical physics</title><addtitle>Commun. Math. Phys</addtitle><description>We study geometric presentations of braid groups for particles that are constrained to move on a graph, i.e. a network consisting of nodes and edges. Our proposed set of generators consists of exchanges of pairs of particles on junctions of the graph and of certain circular moves where one particle travels around a simple cycle of the graph. We point out that so defined generators often do not satisfy the braiding relation known from 2 D physics. We accomplish a full description of relations between the generators for star graphs where we derive certain quasi-braiding relations. We also describe how graph braid groups depend on the (graph-theoretic) connectivity of the graph. This is done in terms of quotients of graph braid groups where one-particle moves are put to identity. In particular, we show that for 3-connected planar graphs such a quotient reconstructs the well-known planar braid group. For 2-connected graphs this approach leads to generalisations of the Yang–Baxter equation. Our results are of particular relevance for the study of non-abelian anyons on networks showing new possibilities for non-abelian quantum statistics on graphs.</description><subject>Braid theory</subject><subject>Braiding</subject><subject>Classical and Quantum Gravitation</subject><subject>Complex Systems</subject><subject>Generators</subject><subject>Graph theory</subject><subject>Graphs</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Physics</subject><subject>Quantum statistics</subject><subject>Quotients</subject><subject>Relativity Theory</subject><subject>Theoretical</subject><issn>0010-3616</issn><issn>1432-0916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kMtKAzEUhoMoWKsv4CrgOnqSTJLOTi22CgW70HXI5KJT2smYTKG-vdER3Lk6i_92-BC6pHBNAdRNBmAMCDBKoIJakMMRmtCKMwI1lcdoAkCBcEnlKTrLeQMANZNygm6XPu78kFqL18ln3w1maGOXcQz4PpnW4WWK-z7jEBNemzS0duuL2mFTFNO_n6OTYLbZX_zeKXpdPLzMH8nqefk0v1sRyyUfiKl51ZiGs5lr3EwaqkJwrnzKHfXgba2ockEIW5uKBiskbSrrK2ZVcGAF8Cm6Gnv7FD_2Pg96E_epK5OaCaaEkgVBcbHRZVPMOfmg-9TuTPrUFPQ3KT2S0oWU_iGlDyXEx1Au5u7Np7_qf1JfGjZr0A</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>An, Byung Hee</creator><creator>Maciazek, Tomasz</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-9232-6985</orcidid></search><sort><creationdate>20210601</creationdate><title>Geometric Presentations of Braid Groups for Particles on a Graph</title><author>An, Byung Hee ; Maciazek, Tomasz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-a934bab328dbd86a17ffdd0953d1e0ec9717df55c9a41fc561b4ce42c7fd0c503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Braid theory</topic><topic>Braiding</topic><topic>Classical and Quantum Gravitation</topic><topic>Complex Systems</topic><topic>Generators</topic><topic>Graph theory</topic><topic>Graphs</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Physics</topic><topic>Quantum statistics</topic><topic>Quotients</topic><topic>Relativity Theory</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>An, Byung Hee</creatorcontrib><creatorcontrib>Maciazek, Tomasz</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>Communications in mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>An, Byung Hee</au><au>Maciazek, Tomasz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Geometric Presentations of Braid Groups for Particles on a Graph</atitle><jtitle>Communications in mathematical physics</jtitle><stitle>Commun. Math. Phys</stitle><date>2021-06-01</date><risdate>2021</risdate><volume>384</volume><issue>2</issue><spage>1109</spage><epage>1140</epage><pages>1109-1140</pages><issn>0010-3616</issn><eissn>1432-0916</eissn><abstract>We study geometric presentations of braid groups for particles that are constrained to move on a graph, i.e. a network consisting of nodes and edges. Our proposed set of generators consists of exchanges of pairs of particles on junctions of the graph and of certain circular moves where one particle travels around a simple cycle of the graph. We point out that so defined generators often do not satisfy the braiding relation known from 2 D physics. We accomplish a full description of relations between the generators for star graphs where we derive certain quasi-braiding relations. We also describe how graph braid groups depend on the (graph-theoretic) connectivity of the graph. This is done in terms of quotients of graph braid groups where one-particle moves are put to identity. In particular, we show that for 3-connected planar graphs such a quotient reconstructs the well-known planar braid group. For 2-connected graphs this approach leads to generalisations of the Yang–Baxter equation. Our results are of particular relevance for the study of non-abelian anyons on networks showing new possibilities for non-abelian quantum statistics on graphs.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00220-021-04095-x</doi><tpages>32</tpages><orcidid>https://orcid.org/0000-0002-9232-6985</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0010-3616
ispartof Communications in mathematical physics, 2021-06, Vol.384 (2), p.1109-1140
issn 0010-3616
1432-0916
language eng
recordid cdi_proquest_journals_2527576002
source Springer Nature - Complete Springer Journals
subjects Braid theory
Braiding
Classical and Quantum Gravitation
Complex Systems
Generators
Graph theory
Graphs
Mathematical and Computational Physics
Mathematical Physics
Physics
Physics and Astronomy
Quantum Physics
Quantum statistics
Quotients
Relativity Theory
Theoretical
title Geometric Presentations of Braid Groups for Particles on a Graph
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T15%3A29%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Geometric%20Presentations%20of%20Braid%20Groups%20for%20Particles%20on%20a%20Graph&rft.jtitle=Communications%20in%20mathematical%20physics&rft.au=An,%20Byung%20Hee&rft.date=2021-06-01&rft.volume=384&rft.issue=2&rft.spage=1109&rft.epage=1140&rft.pages=1109-1140&rft.issn=0010-3616&rft.eissn=1432-0916&rft_id=info:doi/10.1007/s00220-021-04095-x&rft_dat=%3Cproquest_cross%3E2527576002%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2527576002&rft_id=info:pmid/&rfr_iscdi=true