Effects of starvation stress on jade perch scortum barcoo based on proteomics analysis
Proteins related to antioxidant defence systems and energy maintenance play a vital role in resisting starvation in fish. However, studies on the underlying molecular mechanism of starvation stress in the jade perch Scortum barcoo are very limited. Thus, the proteomic changes in S. barcoo during fas...
Gespeichert in:
Veröffentlicht in: | Aquaculture research 2021-06, Vol.52 (6), p.2840-2851 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2851 |
---|---|
container_issue | 6 |
container_start_page | 2840 |
container_title | Aquaculture research |
container_volume | 52 |
creator | Xie, Xiaoyong Ye, Guoling Bao, Yuyuan Ying, Ziwei Xie, Mujiao Zhu, Changbo Wang, Ruixuan |
description | Proteins related to antioxidant defence systems and energy maintenance play a vital role in resisting starvation in fish. However, studies on the underlying molecular mechanism of starvation stress in the jade perch Scortum barcoo are very limited. Thus, the proteomic changes in S. barcoo during fasting were investigated by stable isotope labelling and high‐performance liquid chromatography‐tandem mass spectrometry (iTRAQ‐LC‐ MS/MS) in the present study. Therefore, a total of 3324 proteins were identified, including 134 that were significantly altered (p 1.20 or |
doi_str_mv | 10.1111/are.15135 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2527376477</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2527376477</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3325-618ae97990b02abe97d9a730735c00f04bed4fa2673f2fe714960527c0e044bf3</originalsourceid><addsrcrecordid>eNp1kE9LAzEQxYMoWKsHv0HAk4dtJ5tk4x5LqX9AEETFW8hmJ7ilbWpmq_Tbm7penct7DL8ZHo-xSwETkWfqEk6EFlIfsZGQlS5KAfXxwWtdaG3eT9kZ0RJAKJBixN4WIaDvicfAqXfpy_Vd3GSbkPJyw5euRb7F5D84-Zj63Zo3LvkYsxC2B2SbYo9x3XnibuNWe-ronJ0EtyK8-NMxe71dvMzvi8enu4f57LHwUpa6qMSNw9rUNTRQuibbtnZGgpHaAwRQDbYquLIyMpQBjVB1Bbo0HhCUaoIcs6vhb87wuUPq7TLuUg5BtsycNJUyJlPXA-VTJEoY7DZ1a5f2VoA91GZzbfa3tsxOB_a7W-H-f9DOnhfDxQ93bW55</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2527376477</pqid></control><display><type>article</type><title>Effects of starvation stress on jade perch scortum barcoo based on proteomics analysis</title><source>Access via Wiley Online Library</source><creator>Xie, Xiaoyong ; Ye, Guoling ; Bao, Yuyuan ; Ying, Ziwei ; Xie, Mujiao ; Zhu, Changbo ; Wang, Ruixuan</creator><creatorcontrib>Xie, Xiaoyong ; Ye, Guoling ; Bao, Yuyuan ; Ying, Ziwei ; Xie, Mujiao ; Zhu, Changbo ; Wang, Ruixuan</creatorcontrib><description>Proteins related to antioxidant defence systems and energy maintenance play a vital role in resisting starvation in fish. However, studies on the underlying molecular mechanism of starvation stress in the jade perch Scortum barcoo are very limited. Thus, the proteomic changes in S. barcoo during fasting were investigated by stable isotope labelling and high‐performance liquid chromatography‐tandem mass spectrometry (iTRAQ‐LC‐ MS/MS) in the present study. Therefore, a total of 3324 proteins were identified, including 134 that were significantly altered (p < 0.05, fold change >1.20 or <0.83) in the experimental groups compared with the control group. Among all the differentially expressed proteins, only protein‐disulphide reductase (TXNDC12) was upregulated. One‐third of the differentially expressed proteins were enriched in the amino acid metabolism pathway, tricarboxylic acid (TCA) cycle pathway, fatty acid metabolism pathway and oxidative phosphorylation pathway. Proteins differentially expressed in the experimental group, including AASS, OGDH, ACAD8, FAH, BHMT, AOC3, AOC2 and HIBADH, are components of pathways that control the metabolism of amino acids. The results suggested the involvement of antioxidant defence in the response to an oxidative imbalance, and GSH, SOD and AKP were regulated under conditions of starvation stress. In conclusion, the data indicated that starvation‐induced changes in protein levels that might affect metabolism and the antioxidant system.</description><identifier>ISSN: 1355-557X</identifier><identifier>EISSN: 1365-2109</identifier><identifier>DOI: 10.1111/are.15135</identifier><language>eng</language><publisher>Oxford: Hindawi Limited</publisher><subject>Amino acids ; Antioxidants ; Betaine-homocysteine S-methyltransferase ; Fatty acids ; Fish ; Isotope labelling ; Labeling ; Liquid chromatography ; Mass spectrometry ; Mass spectroscopy ; Metabolism ; Oxidative metabolism ; Oxidative phosphorylation ; Phosphorylation ; Protein turnover ; Proteins ; Proteomics ; Reductases ; Scortum barcoo ; Stable isotopes ; Starvation ; Stress ; Tricarboxylic acid cycle</subject><ispartof>Aquaculture research, 2021-06, Vol.52 (6), p.2840-2851</ispartof><rights>2021 John Wiley & Sons Ltd</rights><rights>Copyright © 2021 John Wiley & Sons Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3325-618ae97990b02abe97d9a730735c00f04bed4fa2673f2fe714960527c0e044bf3</citedby><cites>FETCH-LOGICAL-c3325-618ae97990b02abe97d9a730735c00f04bed4fa2673f2fe714960527c0e044bf3</cites><orcidid>0000-0001-8096-7497 ; 0000-0002-9122-6288</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fare.15135$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fare.15135$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Xie, Xiaoyong</creatorcontrib><creatorcontrib>Ye, Guoling</creatorcontrib><creatorcontrib>Bao, Yuyuan</creatorcontrib><creatorcontrib>Ying, Ziwei</creatorcontrib><creatorcontrib>Xie, Mujiao</creatorcontrib><creatorcontrib>Zhu, Changbo</creatorcontrib><creatorcontrib>Wang, Ruixuan</creatorcontrib><title>Effects of starvation stress on jade perch scortum barcoo based on proteomics analysis</title><title>Aquaculture research</title><description>Proteins related to antioxidant defence systems and energy maintenance play a vital role in resisting starvation in fish. However, studies on the underlying molecular mechanism of starvation stress in the jade perch Scortum barcoo are very limited. Thus, the proteomic changes in S. barcoo during fasting were investigated by stable isotope labelling and high‐performance liquid chromatography‐tandem mass spectrometry (iTRAQ‐LC‐ MS/MS) in the present study. Therefore, a total of 3324 proteins were identified, including 134 that were significantly altered (p < 0.05, fold change >1.20 or <0.83) in the experimental groups compared with the control group. Among all the differentially expressed proteins, only protein‐disulphide reductase (TXNDC12) was upregulated. One‐third of the differentially expressed proteins were enriched in the amino acid metabolism pathway, tricarboxylic acid (TCA) cycle pathway, fatty acid metabolism pathway and oxidative phosphorylation pathway. Proteins differentially expressed in the experimental group, including AASS, OGDH, ACAD8, FAH, BHMT, AOC3, AOC2 and HIBADH, are components of pathways that control the metabolism of amino acids. The results suggested the involvement of antioxidant defence in the response to an oxidative imbalance, and GSH, SOD and AKP were regulated under conditions of starvation stress. In conclusion, the data indicated that starvation‐induced changes in protein levels that might affect metabolism and the antioxidant system.</description><subject>Amino acids</subject><subject>Antioxidants</subject><subject>Betaine-homocysteine S-methyltransferase</subject><subject>Fatty acids</subject><subject>Fish</subject><subject>Isotope labelling</subject><subject>Labeling</subject><subject>Liquid chromatography</subject><subject>Mass spectrometry</subject><subject>Mass spectroscopy</subject><subject>Metabolism</subject><subject>Oxidative metabolism</subject><subject>Oxidative phosphorylation</subject><subject>Phosphorylation</subject><subject>Protein turnover</subject><subject>Proteins</subject><subject>Proteomics</subject><subject>Reductases</subject><subject>Scortum barcoo</subject><subject>Stable isotopes</subject><subject>Starvation</subject><subject>Stress</subject><subject>Tricarboxylic acid cycle</subject><issn>1355-557X</issn><issn>1365-2109</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kE9LAzEQxYMoWKsHv0HAk4dtJ5tk4x5LqX9AEETFW8hmJ7ilbWpmq_Tbm7penct7DL8ZHo-xSwETkWfqEk6EFlIfsZGQlS5KAfXxwWtdaG3eT9kZ0RJAKJBixN4WIaDvicfAqXfpy_Vd3GSbkPJyw5euRb7F5D84-Zj63Zo3LvkYsxC2B2SbYo9x3XnibuNWe-ronJ0EtyK8-NMxe71dvMzvi8enu4f57LHwUpa6qMSNw9rUNTRQuibbtnZGgpHaAwRQDbYquLIyMpQBjVB1Bbo0HhCUaoIcs6vhb87wuUPq7TLuUg5BtsycNJUyJlPXA-VTJEoY7DZ1a5f2VoA91GZzbfa3tsxOB_a7W-H-f9DOnhfDxQ93bW55</recordid><startdate>202106</startdate><enddate>202106</enddate><creator>Xie, Xiaoyong</creator><creator>Ye, Guoling</creator><creator>Bao, Yuyuan</creator><creator>Ying, Ziwei</creator><creator>Xie, Mujiao</creator><creator>Zhu, Changbo</creator><creator>Wang, Ruixuan</creator><general>Hindawi Limited</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TN</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>H98</scope><scope>H99</scope><scope>L.F</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><orcidid>https://orcid.org/0000-0001-8096-7497</orcidid><orcidid>https://orcid.org/0000-0002-9122-6288</orcidid></search><sort><creationdate>202106</creationdate><title>Effects of starvation stress on jade perch scortum barcoo based on proteomics analysis</title><author>Xie, Xiaoyong ; Ye, Guoling ; Bao, Yuyuan ; Ying, Ziwei ; Xie, Mujiao ; Zhu, Changbo ; Wang, Ruixuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3325-618ae97990b02abe97d9a730735c00f04bed4fa2673f2fe714960527c0e044bf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Amino acids</topic><topic>Antioxidants</topic><topic>Betaine-homocysteine S-methyltransferase</topic><topic>Fatty acids</topic><topic>Fish</topic><topic>Isotope labelling</topic><topic>Labeling</topic><topic>Liquid chromatography</topic><topic>Mass spectrometry</topic><topic>Mass spectroscopy</topic><topic>Metabolism</topic><topic>Oxidative metabolism</topic><topic>Oxidative phosphorylation</topic><topic>Phosphorylation</topic><topic>Protein turnover</topic><topic>Proteins</topic><topic>Proteomics</topic><topic>Reductases</topic><topic>Scortum barcoo</topic><topic>Stable isotopes</topic><topic>Starvation</topic><topic>Stress</topic><topic>Tricarboxylic acid cycle</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xie, Xiaoyong</creatorcontrib><creatorcontrib>Ye, Guoling</creatorcontrib><creatorcontrib>Bao, Yuyuan</creatorcontrib><creatorcontrib>Ying, Ziwei</creatorcontrib><creatorcontrib>Xie, Mujiao</creatorcontrib><creatorcontrib>Zhu, Changbo</creatorcontrib><creatorcontrib>Wang, Ruixuan</creatorcontrib><collection>CrossRef</collection><collection>Oceanic Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Aquaculture Abstracts</collection><collection>ASFA: Marine Biotechnology Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Marine Biotechnology Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Aquaculture research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xie, Xiaoyong</au><au>Ye, Guoling</au><au>Bao, Yuyuan</au><au>Ying, Ziwei</au><au>Xie, Mujiao</au><au>Zhu, Changbo</au><au>Wang, Ruixuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of starvation stress on jade perch scortum barcoo based on proteomics analysis</atitle><jtitle>Aquaculture research</jtitle><date>2021-06</date><risdate>2021</risdate><volume>52</volume><issue>6</issue><spage>2840</spage><epage>2851</epage><pages>2840-2851</pages><issn>1355-557X</issn><eissn>1365-2109</eissn><abstract>Proteins related to antioxidant defence systems and energy maintenance play a vital role in resisting starvation in fish. However, studies on the underlying molecular mechanism of starvation stress in the jade perch Scortum barcoo are very limited. Thus, the proteomic changes in S. barcoo during fasting were investigated by stable isotope labelling and high‐performance liquid chromatography‐tandem mass spectrometry (iTRAQ‐LC‐ MS/MS) in the present study. Therefore, a total of 3324 proteins were identified, including 134 that were significantly altered (p < 0.05, fold change >1.20 or <0.83) in the experimental groups compared with the control group. Among all the differentially expressed proteins, only protein‐disulphide reductase (TXNDC12) was upregulated. One‐third of the differentially expressed proteins were enriched in the amino acid metabolism pathway, tricarboxylic acid (TCA) cycle pathway, fatty acid metabolism pathway and oxidative phosphorylation pathway. Proteins differentially expressed in the experimental group, including AASS, OGDH, ACAD8, FAH, BHMT, AOC3, AOC2 and HIBADH, are components of pathways that control the metabolism of amino acids. The results suggested the involvement of antioxidant defence in the response to an oxidative imbalance, and GSH, SOD and AKP were regulated under conditions of starvation stress. In conclusion, the data indicated that starvation‐induced changes in protein levels that might affect metabolism and the antioxidant system.</abstract><cop>Oxford</cop><pub>Hindawi Limited</pub><doi>10.1111/are.15135</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-8096-7497</orcidid><orcidid>https://orcid.org/0000-0002-9122-6288</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1355-557X |
ispartof | Aquaculture research, 2021-06, Vol.52 (6), p.2840-2851 |
issn | 1355-557X 1365-2109 |
language | eng |
recordid | cdi_proquest_journals_2527376477 |
source | Access via Wiley Online Library |
subjects | Amino acids Antioxidants Betaine-homocysteine S-methyltransferase Fatty acids Fish Isotope labelling Labeling Liquid chromatography Mass spectrometry Mass spectroscopy Metabolism Oxidative metabolism Oxidative phosphorylation Phosphorylation Protein turnover Proteins Proteomics Reductases Scortum barcoo Stable isotopes Starvation Stress Tricarboxylic acid cycle |
title | Effects of starvation stress on jade perch scortum barcoo based on proteomics analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T13%3A00%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20starvation%20stress%20on%20jade%20perch%20scortum%20barcoo%20based%20on%20proteomics%20analysis&rft.jtitle=Aquaculture%20research&rft.au=Xie,%20Xiaoyong&rft.date=2021-06&rft.volume=52&rft.issue=6&rft.spage=2840&rft.epage=2851&rft.pages=2840-2851&rft.issn=1355-557X&rft.eissn=1365-2109&rft_id=info:doi/10.1111/are.15135&rft_dat=%3Cproquest_cross%3E2527376477%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2527376477&rft_id=info:pmid/&rfr_iscdi=true |