Effects of starvation stress on jade perch scortum barcoo based on proteomics analysis

Proteins related to antioxidant defence systems and energy maintenance play a vital role in resisting starvation in fish. However, studies on the underlying molecular mechanism of starvation stress in the jade perch Scortum barcoo are very limited. Thus, the proteomic changes in S. barcoo during fas...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Aquaculture research 2021-06, Vol.52 (6), p.2840-2851
Hauptverfasser: Xie, Xiaoyong, Ye, Guoling, Bao, Yuyuan, Ying, Ziwei, Xie, Mujiao, Zhu, Changbo, Wang, Ruixuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2851
container_issue 6
container_start_page 2840
container_title Aquaculture research
container_volume 52
creator Xie, Xiaoyong
Ye, Guoling
Bao, Yuyuan
Ying, Ziwei
Xie, Mujiao
Zhu, Changbo
Wang, Ruixuan
description Proteins related to antioxidant defence systems and energy maintenance play a vital role in resisting starvation in fish. However, studies on the underlying molecular mechanism of starvation stress in the jade perch Scortum barcoo are very limited. Thus, the proteomic changes in S. barcoo during fasting were investigated by stable isotope labelling and high‐performance liquid chromatography‐tandem mass spectrometry (iTRAQ‐LC‐ MS/MS) in the present study. Therefore, a total of 3324 proteins were identified, including 134 that were significantly altered (p 1.20 or
doi_str_mv 10.1111/are.15135
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2527376477</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2527376477</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3325-618ae97990b02abe97d9a730735c00f04bed4fa2673f2fe714960527c0e044bf3</originalsourceid><addsrcrecordid>eNp1kE9LAzEQxYMoWKsHv0HAk4dtJ5tk4x5LqX9AEETFW8hmJ7ilbWpmq_Tbm7penct7DL8ZHo-xSwETkWfqEk6EFlIfsZGQlS5KAfXxwWtdaG3eT9kZ0RJAKJBixN4WIaDvicfAqXfpy_Vd3GSbkPJyw5euRb7F5D84-Zj63Zo3LvkYsxC2B2SbYo9x3XnibuNWe-ronJ0EtyK8-NMxe71dvMzvi8enu4f57LHwUpa6qMSNw9rUNTRQuibbtnZGgpHaAwRQDbYquLIyMpQBjVB1Bbo0HhCUaoIcs6vhb87wuUPq7TLuUg5BtsycNJUyJlPXA-VTJEoY7DZ1a5f2VoA91GZzbfa3tsxOB_a7W-H-f9DOnhfDxQ93bW55</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2527376477</pqid></control><display><type>article</type><title>Effects of starvation stress on jade perch scortum barcoo based on proteomics analysis</title><source>Access via Wiley Online Library</source><creator>Xie, Xiaoyong ; Ye, Guoling ; Bao, Yuyuan ; Ying, Ziwei ; Xie, Mujiao ; Zhu, Changbo ; Wang, Ruixuan</creator><creatorcontrib>Xie, Xiaoyong ; Ye, Guoling ; Bao, Yuyuan ; Ying, Ziwei ; Xie, Mujiao ; Zhu, Changbo ; Wang, Ruixuan</creatorcontrib><description>Proteins related to antioxidant defence systems and energy maintenance play a vital role in resisting starvation in fish. However, studies on the underlying molecular mechanism of starvation stress in the jade perch Scortum barcoo are very limited. Thus, the proteomic changes in S. barcoo during fasting were investigated by stable isotope labelling and high‐performance liquid chromatography‐tandem mass spectrometry (iTRAQ‐LC‐ MS/MS) in the present study. Therefore, a total of 3324 proteins were identified, including 134 that were significantly altered (p &lt; 0.05, fold change &gt;1.20 or &lt;0.83) in the experimental groups compared with the control group. Among all the differentially expressed proteins, only protein‐disulphide reductase (TXNDC12) was upregulated. One‐third of the differentially expressed proteins were enriched in the amino acid metabolism pathway, tricarboxylic acid (TCA) cycle pathway, fatty acid metabolism pathway and oxidative phosphorylation pathway. Proteins differentially expressed in the experimental group, including AASS, OGDH, ACAD8, FAH, BHMT, AOC3, AOC2 and HIBADH, are components of pathways that control the metabolism of amino acids. The results suggested the involvement of antioxidant defence in the response to an oxidative imbalance, and GSH, SOD and AKP were regulated under conditions of starvation stress. In conclusion, the data indicated that starvation‐induced changes in protein levels that might affect metabolism and the antioxidant system.</description><identifier>ISSN: 1355-557X</identifier><identifier>EISSN: 1365-2109</identifier><identifier>DOI: 10.1111/are.15135</identifier><language>eng</language><publisher>Oxford: Hindawi Limited</publisher><subject>Amino acids ; Antioxidants ; Betaine-homocysteine S-methyltransferase ; Fatty acids ; Fish ; Isotope labelling ; Labeling ; Liquid chromatography ; Mass spectrometry ; Mass spectroscopy ; Metabolism ; Oxidative metabolism ; Oxidative phosphorylation ; Phosphorylation ; Protein turnover ; Proteins ; Proteomics ; Reductases ; Scortum barcoo ; Stable isotopes ; Starvation ; Stress ; Tricarboxylic acid cycle</subject><ispartof>Aquaculture research, 2021-06, Vol.52 (6), p.2840-2851</ispartof><rights>2021 John Wiley &amp; Sons Ltd</rights><rights>Copyright © 2021 John Wiley &amp; Sons Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3325-618ae97990b02abe97d9a730735c00f04bed4fa2673f2fe714960527c0e044bf3</citedby><cites>FETCH-LOGICAL-c3325-618ae97990b02abe97d9a730735c00f04bed4fa2673f2fe714960527c0e044bf3</cites><orcidid>0000-0001-8096-7497 ; 0000-0002-9122-6288</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fare.15135$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fare.15135$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Xie, Xiaoyong</creatorcontrib><creatorcontrib>Ye, Guoling</creatorcontrib><creatorcontrib>Bao, Yuyuan</creatorcontrib><creatorcontrib>Ying, Ziwei</creatorcontrib><creatorcontrib>Xie, Mujiao</creatorcontrib><creatorcontrib>Zhu, Changbo</creatorcontrib><creatorcontrib>Wang, Ruixuan</creatorcontrib><title>Effects of starvation stress on jade perch scortum barcoo based on proteomics analysis</title><title>Aquaculture research</title><description>Proteins related to antioxidant defence systems and energy maintenance play a vital role in resisting starvation in fish. However, studies on the underlying molecular mechanism of starvation stress in the jade perch Scortum barcoo are very limited. Thus, the proteomic changes in S. barcoo during fasting were investigated by stable isotope labelling and high‐performance liquid chromatography‐tandem mass spectrometry (iTRAQ‐LC‐ MS/MS) in the present study. Therefore, a total of 3324 proteins were identified, including 134 that were significantly altered (p &lt; 0.05, fold change &gt;1.20 or &lt;0.83) in the experimental groups compared with the control group. Among all the differentially expressed proteins, only protein‐disulphide reductase (TXNDC12) was upregulated. One‐third of the differentially expressed proteins were enriched in the amino acid metabolism pathway, tricarboxylic acid (TCA) cycle pathway, fatty acid metabolism pathway and oxidative phosphorylation pathway. Proteins differentially expressed in the experimental group, including AASS, OGDH, ACAD8, FAH, BHMT, AOC3, AOC2 and HIBADH, are components of pathways that control the metabolism of amino acids. The results suggested the involvement of antioxidant defence in the response to an oxidative imbalance, and GSH, SOD and AKP were regulated under conditions of starvation stress. In conclusion, the data indicated that starvation‐induced changes in protein levels that might affect metabolism and the antioxidant system.</description><subject>Amino acids</subject><subject>Antioxidants</subject><subject>Betaine-homocysteine S-methyltransferase</subject><subject>Fatty acids</subject><subject>Fish</subject><subject>Isotope labelling</subject><subject>Labeling</subject><subject>Liquid chromatography</subject><subject>Mass spectrometry</subject><subject>Mass spectroscopy</subject><subject>Metabolism</subject><subject>Oxidative metabolism</subject><subject>Oxidative phosphorylation</subject><subject>Phosphorylation</subject><subject>Protein turnover</subject><subject>Proteins</subject><subject>Proteomics</subject><subject>Reductases</subject><subject>Scortum barcoo</subject><subject>Stable isotopes</subject><subject>Starvation</subject><subject>Stress</subject><subject>Tricarboxylic acid cycle</subject><issn>1355-557X</issn><issn>1365-2109</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kE9LAzEQxYMoWKsHv0HAk4dtJ5tk4x5LqX9AEETFW8hmJ7ilbWpmq_Tbm7penct7DL8ZHo-xSwETkWfqEk6EFlIfsZGQlS5KAfXxwWtdaG3eT9kZ0RJAKJBixN4WIaDvicfAqXfpy_Vd3GSbkPJyw5euRb7F5D84-Zj63Zo3LvkYsxC2B2SbYo9x3XnibuNWe-ronJ0EtyK8-NMxe71dvMzvi8enu4f57LHwUpa6qMSNw9rUNTRQuibbtnZGgpHaAwRQDbYquLIyMpQBjVB1Bbo0HhCUaoIcs6vhb87wuUPq7TLuUg5BtsycNJUyJlPXA-VTJEoY7DZ1a5f2VoA91GZzbfa3tsxOB_a7W-H-f9DOnhfDxQ93bW55</recordid><startdate>202106</startdate><enddate>202106</enddate><creator>Xie, Xiaoyong</creator><creator>Ye, Guoling</creator><creator>Bao, Yuyuan</creator><creator>Ying, Ziwei</creator><creator>Xie, Mujiao</creator><creator>Zhu, Changbo</creator><creator>Wang, Ruixuan</creator><general>Hindawi Limited</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TN</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>H98</scope><scope>H99</scope><scope>L.F</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><orcidid>https://orcid.org/0000-0001-8096-7497</orcidid><orcidid>https://orcid.org/0000-0002-9122-6288</orcidid></search><sort><creationdate>202106</creationdate><title>Effects of starvation stress on jade perch scortum barcoo based on proteomics analysis</title><author>Xie, Xiaoyong ; Ye, Guoling ; Bao, Yuyuan ; Ying, Ziwei ; Xie, Mujiao ; Zhu, Changbo ; Wang, Ruixuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3325-618ae97990b02abe97d9a730735c00f04bed4fa2673f2fe714960527c0e044bf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Amino acids</topic><topic>Antioxidants</topic><topic>Betaine-homocysteine S-methyltransferase</topic><topic>Fatty acids</topic><topic>Fish</topic><topic>Isotope labelling</topic><topic>Labeling</topic><topic>Liquid chromatography</topic><topic>Mass spectrometry</topic><topic>Mass spectroscopy</topic><topic>Metabolism</topic><topic>Oxidative metabolism</topic><topic>Oxidative phosphorylation</topic><topic>Phosphorylation</topic><topic>Protein turnover</topic><topic>Proteins</topic><topic>Proteomics</topic><topic>Reductases</topic><topic>Scortum barcoo</topic><topic>Stable isotopes</topic><topic>Starvation</topic><topic>Stress</topic><topic>Tricarboxylic acid cycle</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xie, Xiaoyong</creatorcontrib><creatorcontrib>Ye, Guoling</creatorcontrib><creatorcontrib>Bao, Yuyuan</creatorcontrib><creatorcontrib>Ying, Ziwei</creatorcontrib><creatorcontrib>Xie, Mujiao</creatorcontrib><creatorcontrib>Zhu, Changbo</creatorcontrib><creatorcontrib>Wang, Ruixuan</creatorcontrib><collection>CrossRef</collection><collection>Oceanic Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Aquaculture Abstracts</collection><collection>ASFA: Marine Biotechnology Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Marine Biotechnology Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Aquaculture research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xie, Xiaoyong</au><au>Ye, Guoling</au><au>Bao, Yuyuan</au><au>Ying, Ziwei</au><au>Xie, Mujiao</au><au>Zhu, Changbo</au><au>Wang, Ruixuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of starvation stress on jade perch scortum barcoo based on proteomics analysis</atitle><jtitle>Aquaculture research</jtitle><date>2021-06</date><risdate>2021</risdate><volume>52</volume><issue>6</issue><spage>2840</spage><epage>2851</epage><pages>2840-2851</pages><issn>1355-557X</issn><eissn>1365-2109</eissn><abstract>Proteins related to antioxidant defence systems and energy maintenance play a vital role in resisting starvation in fish. However, studies on the underlying molecular mechanism of starvation stress in the jade perch Scortum barcoo are very limited. Thus, the proteomic changes in S. barcoo during fasting were investigated by stable isotope labelling and high‐performance liquid chromatography‐tandem mass spectrometry (iTRAQ‐LC‐ MS/MS) in the present study. Therefore, a total of 3324 proteins were identified, including 134 that were significantly altered (p &lt; 0.05, fold change &gt;1.20 or &lt;0.83) in the experimental groups compared with the control group. Among all the differentially expressed proteins, only protein‐disulphide reductase (TXNDC12) was upregulated. One‐third of the differentially expressed proteins were enriched in the amino acid metabolism pathway, tricarboxylic acid (TCA) cycle pathway, fatty acid metabolism pathway and oxidative phosphorylation pathway. Proteins differentially expressed in the experimental group, including AASS, OGDH, ACAD8, FAH, BHMT, AOC3, AOC2 and HIBADH, are components of pathways that control the metabolism of amino acids. The results suggested the involvement of antioxidant defence in the response to an oxidative imbalance, and GSH, SOD and AKP were regulated under conditions of starvation stress. In conclusion, the data indicated that starvation‐induced changes in protein levels that might affect metabolism and the antioxidant system.</abstract><cop>Oxford</cop><pub>Hindawi Limited</pub><doi>10.1111/are.15135</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-8096-7497</orcidid><orcidid>https://orcid.org/0000-0002-9122-6288</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1355-557X
ispartof Aquaculture research, 2021-06, Vol.52 (6), p.2840-2851
issn 1355-557X
1365-2109
language eng
recordid cdi_proquest_journals_2527376477
source Access via Wiley Online Library
subjects Amino acids
Antioxidants
Betaine-homocysteine S-methyltransferase
Fatty acids
Fish
Isotope labelling
Labeling
Liquid chromatography
Mass spectrometry
Mass spectroscopy
Metabolism
Oxidative metabolism
Oxidative phosphorylation
Phosphorylation
Protein turnover
Proteins
Proteomics
Reductases
Scortum barcoo
Stable isotopes
Starvation
Stress
Tricarboxylic acid cycle
title Effects of starvation stress on jade perch scortum barcoo based on proteomics analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T13%3A00%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20starvation%20stress%20on%20jade%20perch%20scortum%20barcoo%20based%20on%20proteomics%20analysis&rft.jtitle=Aquaculture%20research&rft.au=Xie,%20Xiaoyong&rft.date=2021-06&rft.volume=52&rft.issue=6&rft.spage=2840&rft.epage=2851&rft.pages=2840-2851&rft.issn=1355-557X&rft.eissn=1365-2109&rft_id=info:doi/10.1111/are.15135&rft_dat=%3Cproquest_cross%3E2527376477%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2527376477&rft_id=info:pmid/&rfr_iscdi=true