Adaptive Test-Time Augmentation for Low-Power CPU

Convolutional Neural Networks (ConvNets) are trained offline using the few available data and may therefore suffer from substantial accuracy loss when ported on the field, where unseen input patterns received under unpredictable external conditions can mislead the model. Test-Time Augmentation (TTA)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2021-05
Hauptverfasser: Mocerino, Luca, Rizzo, Roberto G, Peluso, Valentino, Calimera, Andrea, Macii, Enrico
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Mocerino, Luca
Rizzo, Roberto G
Peluso, Valentino
Calimera, Andrea
Macii, Enrico
description Convolutional Neural Networks (ConvNets) are trained offline using the few available data and may therefore suffer from substantial accuracy loss when ported on the field, where unseen input patterns received under unpredictable external conditions can mislead the model. Test-Time Augmentation (TTA) techniques aim to alleviate such common side effect at inference-time, first running multiple feed-forward passes on a set of altered versions of the same input sample, and then computing the main outcome through a consensus of the aggregated predictions. Unfortunately, the implementation of TTA on embedded CPUs introduces latency penalties that limit its adoption on edge applications. To tackle this issue, we propose AdapTTA, an adaptive implementation of TTA that controls the number of feed-forward passes dynamically, depending on the complexity of the input. Experimental results on state-of-the-art ConvNets for image classification deployed on a commercial ARM Cortex-A CPU demonstrate AdapTTA reaches remarkable latency savings, from 1.49X to 2.21X, and hence a higher frame rate compared to static TTA, still preserving the same accuracy gain.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2527374815</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2527374815</sourcerecordid><originalsourceid>FETCH-proquest_journals_25273748153</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQwdExJLCjJLEtVCEktLtENycxNVXAsTc9NzStJLMnMz1NIyy9S8Mkv1w3IL08tUnAOCOVhYE1LzClO5YXS3AzKbq4hzh66BUX5haVAQ-Kz8kuL8oBS8UamRubG5iYWhqbGxKkCAFceMr8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2527374815</pqid></control><display><type>article</type><title>Adaptive Test-Time Augmentation for Low-Power CPU</title><source>Freely Accessible Journals</source><creator>Mocerino, Luca ; Rizzo, Roberto G ; Peluso, Valentino ; Calimera, Andrea ; Macii, Enrico</creator><creatorcontrib>Mocerino, Luca ; Rizzo, Roberto G ; Peluso, Valentino ; Calimera, Andrea ; Macii, Enrico</creatorcontrib><description>Convolutional Neural Networks (ConvNets) are trained offline using the few available data and may therefore suffer from substantial accuracy loss when ported on the field, where unseen input patterns received under unpredictable external conditions can mislead the model. Test-Time Augmentation (TTA) techniques aim to alleviate such common side effect at inference-time, first running multiple feed-forward passes on a set of altered versions of the same input sample, and then computing the main outcome through a consensus of the aggregated predictions. Unfortunately, the implementation of TTA on embedded CPUs introduces latency penalties that limit its adoption on edge applications. To tackle this issue, we propose AdapTTA, an adaptive implementation of TTA that controls the number of feed-forward passes dynamically, depending on the complexity of the input. Experimental results on state-of-the-art ConvNets for image classification deployed on a commercial ARM Cortex-A CPU demonstrate AdapTTA reaches remarkable latency savings, from 1.49X to 2.21X, and hence a higher frame rate compared to static TTA, still preserving the same accuracy gain.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Accuracy ; Artificial neural networks ; Augmentation ; Feedforward control ; Image classification ; Model testing ; Testing time</subject><ispartof>arXiv.org, 2021-05</ispartof><rights>2021. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Mocerino, Luca</creatorcontrib><creatorcontrib>Rizzo, Roberto G</creatorcontrib><creatorcontrib>Peluso, Valentino</creatorcontrib><creatorcontrib>Calimera, Andrea</creatorcontrib><creatorcontrib>Macii, Enrico</creatorcontrib><title>Adaptive Test-Time Augmentation for Low-Power CPU</title><title>arXiv.org</title><description>Convolutional Neural Networks (ConvNets) are trained offline using the few available data and may therefore suffer from substantial accuracy loss when ported on the field, where unseen input patterns received under unpredictable external conditions can mislead the model. Test-Time Augmentation (TTA) techniques aim to alleviate such common side effect at inference-time, first running multiple feed-forward passes on a set of altered versions of the same input sample, and then computing the main outcome through a consensus of the aggregated predictions. Unfortunately, the implementation of TTA on embedded CPUs introduces latency penalties that limit its adoption on edge applications. To tackle this issue, we propose AdapTTA, an adaptive implementation of TTA that controls the number of feed-forward passes dynamically, depending on the complexity of the input. Experimental results on state-of-the-art ConvNets for image classification deployed on a commercial ARM Cortex-A CPU demonstrate AdapTTA reaches remarkable latency savings, from 1.49X to 2.21X, and hence a higher frame rate compared to static TTA, still preserving the same accuracy gain.</description><subject>Accuracy</subject><subject>Artificial neural networks</subject><subject>Augmentation</subject><subject>Feedforward control</subject><subject>Image classification</subject><subject>Model testing</subject><subject>Testing time</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQwdExJLCjJLEtVCEktLtENycxNVXAsTc9NzStJLMnMz1NIyy9S8Mkv1w3IL08tUnAOCOVhYE1LzClO5YXS3AzKbq4hzh66BUX5haVAQ-Kz8kuL8oBS8UamRubG5iYWhqbGxKkCAFceMr8</recordid><startdate>20210513</startdate><enddate>20210513</enddate><creator>Mocerino, Luca</creator><creator>Rizzo, Roberto G</creator><creator>Peluso, Valentino</creator><creator>Calimera, Andrea</creator><creator>Macii, Enrico</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20210513</creationdate><title>Adaptive Test-Time Augmentation for Low-Power CPU</title><author>Mocerino, Luca ; Rizzo, Roberto G ; Peluso, Valentino ; Calimera, Andrea ; Macii, Enrico</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_25273748153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Accuracy</topic><topic>Artificial neural networks</topic><topic>Augmentation</topic><topic>Feedforward control</topic><topic>Image classification</topic><topic>Model testing</topic><topic>Testing time</topic><toplevel>online_resources</toplevel><creatorcontrib>Mocerino, Luca</creatorcontrib><creatorcontrib>Rizzo, Roberto G</creatorcontrib><creatorcontrib>Peluso, Valentino</creatorcontrib><creatorcontrib>Calimera, Andrea</creatorcontrib><creatorcontrib>Macii, Enrico</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mocerino, Luca</au><au>Rizzo, Roberto G</au><au>Peluso, Valentino</au><au>Calimera, Andrea</au><au>Macii, Enrico</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Adaptive Test-Time Augmentation for Low-Power CPU</atitle><jtitle>arXiv.org</jtitle><date>2021-05-13</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>Convolutional Neural Networks (ConvNets) are trained offline using the few available data and may therefore suffer from substantial accuracy loss when ported on the field, where unseen input patterns received under unpredictable external conditions can mislead the model. Test-Time Augmentation (TTA) techniques aim to alleviate such common side effect at inference-time, first running multiple feed-forward passes on a set of altered versions of the same input sample, and then computing the main outcome through a consensus of the aggregated predictions. Unfortunately, the implementation of TTA on embedded CPUs introduces latency penalties that limit its adoption on edge applications. To tackle this issue, we propose AdapTTA, an adaptive implementation of TTA that controls the number of feed-forward passes dynamically, depending on the complexity of the input. Experimental results on state-of-the-art ConvNets for image classification deployed on a commercial ARM Cortex-A CPU demonstrate AdapTTA reaches remarkable latency savings, from 1.49X to 2.21X, and hence a higher frame rate compared to static TTA, still preserving the same accuracy gain.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2021-05
issn 2331-8422
language eng
recordid cdi_proquest_journals_2527374815
source Freely Accessible Journals
subjects Accuracy
Artificial neural networks
Augmentation
Feedforward control
Image classification
Model testing
Testing time
title Adaptive Test-Time Augmentation for Low-Power CPU
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T02%3A14%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Adaptive%20Test-Time%20Augmentation%20for%20Low-Power%20CPU&rft.jtitle=arXiv.org&rft.au=Mocerino,%20Luca&rft.date=2021-05-13&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2527374815%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2527374815&rft_id=info:pmid/&rfr_iscdi=true