Adaptive Video Encoding for Different Video Codecs

By 2022, we expect video traffic to reach 82% of the total internet traffic. Undoubtedly, the abundance of video-driven applications will likely lead internet video traffic percentage to a further increase in the near future, enabled by associate advances in video devices' capabilities. In resp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2021, Vol.9, p.68720-68736
Hauptverfasser: Esakki, G., Panayides, A. S., Jalta, V., Pattichis, M. S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 68736
container_issue
container_start_page 68720
container_title IEEE access
container_volume 9
creator Esakki, G.
Panayides, A. S.
Jalta, V.
Pattichis, M. S.
description By 2022, we expect video traffic to reach 82% of the total internet traffic. Undoubtedly, the abundance of video-driven applications will likely lead internet video traffic percentage to a further increase in the near future, enabled by associate advances in video devices' capabilities. In response to this ever-growing demand, the Alliance for Open Media (AOM) and the Joint Video Experts Team (JVET) have demonstrated strong and renewed interest in developing new video codecs. In the fast-changing video codecs' landscape, there is thus, a genuine need to develop adaptive methods that can be universally applied to different codecs. In this study, we formulate video encoding as a multi-objective optimization process where video quality (as a function of VMAF and PSNR), bitrate demands, and encoding rate (in encoded frames per second) are jointly optimized, going beyond the standard video encoding approaches that focus on rate control targeting specific bandwidths. More specifically, we create a dense video encoding space (offline) and then employ regression to generate forward prediction models for each one of the afore-described optimization objectives, using only Pareto-optimal points. We demonstrate our adaptive video encoding approach that leverages the generated forward prediction models that qualify for real-time adaptation using different codecs (e.g., SVT-AV1 and \times 265) for a variety of video datasets and resolutions. To motivate our approach and establish the promise for future fast VVC encoders, we also perform a comparative performance evaluation using both subjective and objective metrics and report on bitrate savings among all possible pairs between VVC, SVT-AV1, \times 265, and VP9 codecs.
doi_str_mv 10.1109/ACCESS.2021.3077313
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2526966106</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9422745</ieee_id><doaj_id>oai_doaj_org_article_00d8a32f77ad4ee4a28eed331fef99ae</doaj_id><sourcerecordid>2526966106</sourcerecordid><originalsourceid>FETCH-LOGICAL-c478t-d0061afa24cddd90131ff40a98cf5258b7ca5f74c387e86b11a5a51d8fb1e6533</originalsourceid><addsrcrecordid>eNpNUE1LAzEQDaJgqf0FvSx43prvZI9lrVooeKh6DWkyKSl1U7NbwX_v1i3FuczwZt57w0NoSvCMEFw9zOt6sV7PKKZkxrBSjLArNKJEViUTTF7_m2_RpG13uC_dQ0KNEJ17e-jiNxQf0UMqFo1LPjbbIqRcPMYQIEPTnZd18uDaO3QT7L6FybmP0fvT4q1-KVevz8t6viodV7orPcaS2GApd977ChNGQuDYVtoFQYXeKGdFUNwxrUDLDSFWWEG8DhsCUjA2RstB1ye7M4ccP23-MclG8wekvDU2d9HtwWDstWU0KGU9B-CWagDPekcIVWWh17oftA45fR2h7cwuHXPTv2-ooLKSkmDZX7HhyuXUthnCxZVgc8raDFmbU9bmnHXPmg6sCAAXRsUpVVywX6oSeSE</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2526966106</pqid></control><display><type>article</type><title>Adaptive Video Encoding for Different Video Codecs</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Esakki, G. ; Panayides, A. S. ; Jalta, V. ; Pattichis, M. S.</creator><creatorcontrib>Esakki, G. ; Panayides, A. S. ; Jalta, V. ; Pattichis, M. S.</creatorcontrib><description><![CDATA[By 2022, we expect video traffic to reach 82% of the total internet traffic. Undoubtedly, the abundance of video-driven applications will likely lead internet video traffic percentage to a further increase in the near future, enabled by associate advances in video devices' capabilities. In response to this ever-growing demand, the Alliance for Open Media (AOM) and the Joint Video Experts Team (JVET) have demonstrated strong and renewed interest in developing new video codecs. In the fast-changing video codecs' landscape, there is thus, a genuine need to develop adaptive methods that can be universally applied to different codecs. In this study, we formulate video encoding as a multi-objective optimization process where video quality (as a function of VMAF and PSNR), bitrate demands, and encoding rate (in encoded frames per second) are jointly optimized, going beyond the standard video encoding approaches that focus on rate control targeting specific bandwidths. More specifically, we create a dense video encoding space (offline) and then employ regression to generate forward prediction models for each one of the afore-described optimization objectives, using only Pareto-optimal points. We demonstrate our adaptive video encoding approach that leverages the generated forward prediction models that qualify for real-time adaptation using different codecs (e.g., SVT-AV1 and <inline-formula> <tex-math notation="LaTeX">\times </tex-math></inline-formula>265) for a variety of video datasets and resolutions. To motivate our approach and establish the promise for future fast VVC encoders, we also perform a comparative performance evaluation using both subjective and objective metrics and report on bitrate savings among all possible pairs between VVC, SVT-AV1, <inline-formula> <tex-math notation="LaTeX">\times </tex-math></inline-formula>265, and VP9 codecs.]]></description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2021.3077313</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>adaptive video streaming ; Alliances ; AV1 ; Codec ; Coders ; Encoding ; Frames per second ; HEVC ; Internet ; Multiple objective analysis ; Optimization ; Pareto optimization ; Performance evaluation ; Prediction models ; Quality assessment ; Streaming media ; versatile video coding ; Video codecs ; video coding ; video compression ; video quality ; video signal processing ; video streaming</subject><ispartof>IEEE access, 2021, Vol.9, p.68720-68736</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c478t-d0061afa24cddd90131ff40a98cf5258b7ca5f74c387e86b11a5a51d8fb1e6533</citedby><cites>FETCH-LOGICAL-c478t-d0061afa24cddd90131ff40a98cf5258b7ca5f74c387e86b11a5a51d8fb1e6533</cites><orcidid>0000-0003-4371-716X ; 0000-0002-1108-7493 ; 0000-0001-9829-7946 ; 0000-0002-1574-1827</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9422745$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2101,4023,27632,27922,27923,27924,54932</link.rule.ids></links><search><creatorcontrib>Esakki, G.</creatorcontrib><creatorcontrib>Panayides, A. S.</creatorcontrib><creatorcontrib>Jalta, V.</creatorcontrib><creatorcontrib>Pattichis, M. S.</creatorcontrib><title>Adaptive Video Encoding for Different Video Codecs</title><title>IEEE access</title><addtitle>Access</addtitle><description><![CDATA[By 2022, we expect video traffic to reach 82% of the total internet traffic. Undoubtedly, the abundance of video-driven applications will likely lead internet video traffic percentage to a further increase in the near future, enabled by associate advances in video devices' capabilities. In response to this ever-growing demand, the Alliance for Open Media (AOM) and the Joint Video Experts Team (JVET) have demonstrated strong and renewed interest in developing new video codecs. In the fast-changing video codecs' landscape, there is thus, a genuine need to develop adaptive methods that can be universally applied to different codecs. In this study, we formulate video encoding as a multi-objective optimization process where video quality (as a function of VMAF and PSNR), bitrate demands, and encoding rate (in encoded frames per second) are jointly optimized, going beyond the standard video encoding approaches that focus on rate control targeting specific bandwidths. More specifically, we create a dense video encoding space (offline) and then employ regression to generate forward prediction models for each one of the afore-described optimization objectives, using only Pareto-optimal points. We demonstrate our adaptive video encoding approach that leverages the generated forward prediction models that qualify for real-time adaptation using different codecs (e.g., SVT-AV1 and <inline-formula> <tex-math notation="LaTeX">\times </tex-math></inline-formula>265) for a variety of video datasets and resolutions. To motivate our approach and establish the promise for future fast VVC encoders, we also perform a comparative performance evaluation using both subjective and objective metrics and report on bitrate savings among all possible pairs between VVC, SVT-AV1, <inline-formula> <tex-math notation="LaTeX">\times </tex-math></inline-formula>265, and VP9 codecs.]]></description><subject>adaptive video streaming</subject><subject>Alliances</subject><subject>AV1</subject><subject>Codec</subject><subject>Coders</subject><subject>Encoding</subject><subject>Frames per second</subject><subject>HEVC</subject><subject>Internet</subject><subject>Multiple objective analysis</subject><subject>Optimization</subject><subject>Pareto optimization</subject><subject>Performance evaluation</subject><subject>Prediction models</subject><subject>Quality assessment</subject><subject>Streaming media</subject><subject>versatile video coding</subject><subject>Video codecs</subject><subject>video coding</subject><subject>video compression</subject><subject>video quality</subject><subject>video signal processing</subject><subject>video streaming</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUE1LAzEQDaJgqf0FvSx43prvZI9lrVooeKh6DWkyKSl1U7NbwX_v1i3FuczwZt57w0NoSvCMEFw9zOt6sV7PKKZkxrBSjLArNKJEViUTTF7_m2_RpG13uC_dQ0KNEJ17e-jiNxQf0UMqFo1LPjbbIqRcPMYQIEPTnZd18uDaO3QT7L6FybmP0fvT4q1-KVevz8t6viodV7orPcaS2GApd977ChNGQuDYVtoFQYXeKGdFUNwxrUDLDSFWWEG8DhsCUjA2RstB1ye7M4ccP23-MclG8wekvDU2d9HtwWDstWU0KGU9B-CWagDPekcIVWWh17oftA45fR2h7cwuHXPTv2-ooLKSkmDZX7HhyuXUthnCxZVgc8raDFmbU9bmnHXPmg6sCAAXRsUpVVywX6oSeSE</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Esakki, G.</creator><creator>Panayides, A. S.</creator><creator>Jalta, V.</creator><creator>Pattichis, M. S.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4371-716X</orcidid><orcidid>https://orcid.org/0000-0002-1108-7493</orcidid><orcidid>https://orcid.org/0000-0001-9829-7946</orcidid><orcidid>https://orcid.org/0000-0002-1574-1827</orcidid></search><sort><creationdate>2021</creationdate><title>Adaptive Video Encoding for Different Video Codecs</title><author>Esakki, G. ; Panayides, A. S. ; Jalta, V. ; Pattichis, M. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c478t-d0061afa24cddd90131ff40a98cf5258b7ca5f74c387e86b11a5a51d8fb1e6533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>adaptive video streaming</topic><topic>Alliances</topic><topic>AV1</topic><topic>Codec</topic><topic>Coders</topic><topic>Encoding</topic><topic>Frames per second</topic><topic>HEVC</topic><topic>Internet</topic><topic>Multiple objective analysis</topic><topic>Optimization</topic><topic>Pareto optimization</topic><topic>Performance evaluation</topic><topic>Prediction models</topic><topic>Quality assessment</topic><topic>Streaming media</topic><topic>versatile video coding</topic><topic>Video codecs</topic><topic>video coding</topic><topic>video compression</topic><topic>video quality</topic><topic>video signal processing</topic><topic>video streaming</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Esakki, G.</creatorcontrib><creatorcontrib>Panayides, A. S.</creatorcontrib><creatorcontrib>Jalta, V.</creatorcontrib><creatorcontrib>Pattichis, M. S.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Esakki, G.</au><au>Panayides, A. S.</au><au>Jalta, V.</au><au>Pattichis, M. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive Video Encoding for Different Video Codecs</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2021</date><risdate>2021</risdate><volume>9</volume><spage>68720</spage><epage>68736</epage><pages>68720-68736</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract><![CDATA[By 2022, we expect video traffic to reach 82% of the total internet traffic. Undoubtedly, the abundance of video-driven applications will likely lead internet video traffic percentage to a further increase in the near future, enabled by associate advances in video devices' capabilities. In response to this ever-growing demand, the Alliance for Open Media (AOM) and the Joint Video Experts Team (JVET) have demonstrated strong and renewed interest in developing new video codecs. In the fast-changing video codecs' landscape, there is thus, a genuine need to develop adaptive methods that can be universally applied to different codecs. In this study, we formulate video encoding as a multi-objective optimization process where video quality (as a function of VMAF and PSNR), bitrate demands, and encoding rate (in encoded frames per second) are jointly optimized, going beyond the standard video encoding approaches that focus on rate control targeting specific bandwidths. More specifically, we create a dense video encoding space (offline) and then employ regression to generate forward prediction models for each one of the afore-described optimization objectives, using only Pareto-optimal points. We demonstrate our adaptive video encoding approach that leverages the generated forward prediction models that qualify for real-time adaptation using different codecs (e.g., SVT-AV1 and <inline-formula> <tex-math notation="LaTeX">\times </tex-math></inline-formula>265) for a variety of video datasets and resolutions. To motivate our approach and establish the promise for future fast VVC encoders, we also perform a comparative performance evaluation using both subjective and objective metrics and report on bitrate savings among all possible pairs between VVC, SVT-AV1, <inline-formula> <tex-math notation="LaTeX">\times </tex-math></inline-formula>265, and VP9 codecs.]]></abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2021.3077313</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0003-4371-716X</orcidid><orcidid>https://orcid.org/0000-0002-1108-7493</orcidid><orcidid>https://orcid.org/0000-0001-9829-7946</orcidid><orcidid>https://orcid.org/0000-0002-1574-1827</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2021, Vol.9, p.68720-68736
issn 2169-3536
2169-3536
language eng
recordid cdi_proquest_journals_2526966106
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects adaptive video streaming
Alliances
AV1
Codec
Coders
Encoding
Frames per second
HEVC
Internet
Multiple objective analysis
Optimization
Pareto optimization
Performance evaluation
Prediction models
Quality assessment
Streaming media
versatile video coding
Video codecs
video coding
video compression
video quality
video signal processing
video streaming
title Adaptive Video Encoding for Different Video Codecs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T13%3A25%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20Video%20Encoding%20for%20Different%20Video%20Codecs&rft.jtitle=IEEE%20access&rft.au=Esakki,%20G.&rft.date=2021&rft.volume=9&rft.spage=68720&rft.epage=68736&rft.pages=68720-68736&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2021.3077313&rft_dat=%3Cproquest_ieee_%3E2526966106%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2526966106&rft_id=info:pmid/&rft_ieee_id=9422745&rft_doaj_id=oai_doaj_org_article_00d8a32f77ad4ee4a28eed331fef99ae&rfr_iscdi=true