Design and Simulation of Near-Terahertz GaN Photoconductive Switches-Operation in the Negative Differential Mobility Regime and Pulse Compression

The wide bandgap material, Gallium Nitride (GaN), has emerged as the dominant semiconductor material to implement high-electron mobility transistors (HEMTs) that form the basis of RF electronics. GaN is also an excellent material to realize photoconductive switches (PCSS) whose high-frequency perfor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of the Electron Devices Society 2021, Vol.9, p.521-532
Hauptverfasser: Rakheja, Shaloo, Li, Kexin, Dowling, Karen M., Conway, Adam M., Voss, Lars F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 532
container_issue
container_start_page 521
container_title IEEE journal of the Electron Devices Society
container_volume 9
creator Rakheja, Shaloo
Li, Kexin
Dowling, Karen M.
Conway, Adam M.
Voss, Lars F.
description The wide bandgap material, Gallium Nitride (GaN), has emerged as the dominant semiconductor material to implement high-electron mobility transistors (HEMTs) that form the basis of RF electronics. GaN is also an excellent material to realize photoconductive switches (PCSS) whose high-frequency performance could exceed that of RF HEMTs. In this paper, we numerically model the output characteristics of a GaN PCSS as a function of the input electrical and optical bias and the device dimensions. Importantly, we show that operating the GaN PCSS in the regime of negative differential mobility significantly benefits its high-frequency performance by compressing the temporal width of the output current pulse, while also enhancing its peak value. We find that when the optically excited carriers are generated in the middle of the active region, the bandwidth of the device is approximately 600 GHz, while delivering an output power exceeding 800 mW with a power gain greater than 35 dB. The output power increases to 1.5 W, and the power gain exceeds 40 dB with a near-terahertz bandwidth (≈ 800 GHz), as the laser source is moved closer to the anode. Finally, we elucidate that under high optical bias with significant electrostatic screening effects, the DC electric field across the device can be boosted to further enhance the performance of the GaN PCSS.
doi_str_mv 10.1109/JEDS.2021.3077761
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_proquest_journals_2526964531</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9424182</ieee_id><doaj_id>oai_doaj_org_article_d1cd314d68914fa5b17b9de391cd64d6</doaj_id><sourcerecordid>2526964531</sourcerecordid><originalsourceid>FETCH-LOGICAL-c429t-7d77c27d7c4dbdfffd799c892f7e20bfc1638f176c1179a218e5ad956c5abbbd3</originalsourceid><addsrcrecordid>eNpNkd9u0zAYxSMEEtPYAyBuLLhOyeckdnyJ2jGGxjbRcW059ufGVRoX2wWNt-CNcZtpwhe2dfQ7x39OUbyFagFQiY9fL1frBa0oLOqKc87gRXFGgXUl43Xz8r_96-Iixm2VRwdMMHZW_F1hdJuJqMmQtdsdRpWcn4i35BZVKB8wqAFD-kOu1C25H3zy2k_moJP7hWT92yU9YCzv9pk7Gd1E0oDZvFEnZOWsxYBTcmok33zvRpceyXfcuB2eDr0_jBHJ0u_2AWPMEW-KV1Zl7eJpPS9-fL58WH4pb-6urpefbkrdUJFKbjjXNM-6Mb2x1houhO4EtRxp1VsNrO4scKYBuFAUOmyVES3Trer73tTnxfWca7zayn1wOxUepVdOngQfNlKF5PSI0oA2NTSGdQIaq9oeeC8M1iLrLMs56_2c5WNyMmqXUA_5oybUSUJHWUMhQx9maB_8zwPGJLf-EKb8Rklbmuto2vpIwUzp4GMMaJ-vBpU8ti2Pbctj2_Kp7ex5N3scIj7zoqFNPrv-B44np-Y</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2526964531</pqid></control><display><type>article</type><title>Design and Simulation of Near-Terahertz GaN Photoconductive Switches-Operation in the Negative Differential Mobility Regime and Pulse Compression</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Rakheja, Shaloo ; Li, Kexin ; Dowling, Karen M. ; Conway, Adam M. ; Voss, Lars F.</creator><creatorcontrib>Rakheja, Shaloo ; Li, Kexin ; Dowling, Karen M. ; Conway, Adam M. ; Voss, Lars F.</creatorcontrib><description>The wide bandgap material, Gallium Nitride (GaN), has emerged as the dominant semiconductor material to implement high-electron mobility transistors (HEMTs) that form the basis of RF electronics. GaN is also an excellent material to realize photoconductive switches (PCSS) whose high-frequency performance could exceed that of RF HEMTs. In this paper, we numerically model the output characteristics of a GaN PCSS as a function of the input electrical and optical bias and the device dimensions. Importantly, we show that operating the GaN PCSS in the regime of negative differential mobility significantly benefits its high-frequency performance by compressing the temporal width of the output current pulse, while also enhancing its peak value. We find that when the optically excited carriers are generated in the middle of the active region, the bandwidth of the device is approximately 600 GHz, while delivering an output power exceeding 800 mW with a power gain greater than 35 dB. The output power increases to 1.5 W, and the power gain exceeds 40 dB with a near-terahertz bandwidth (≈ 800 GHz), as the laser source is moved closer to the anode. Finally, we elucidate that under high optical bias with significant electrostatic screening effects, the DC electric field across the device can be boosted to further enhance the performance of the GaN PCSS.</description><identifier>ISSN: 2168-6734</identifier><identifier>EISSN: 2168-6734</identifier><identifier>DOI: 10.1109/JEDS.2021.3077761</identifier><identifier>CODEN: IJEDAC</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Bias ; Charge carrier processes ; Compressing ; Electric fields ; Gallium nitride ; Gallium nitrides ; High electron mobility transistors ; high-field transport ; near-terahertz electronics ; negative differential mobility ; Optical pulse compression ; Optical switches ; Optical triggering ; Optimized production technology ; Power gain ; Power generation ; Pulse compression ; Radiative recombination ; Semiconductor materials ; Switches ; Terahertz frequencies ; wide bandgap semiconductors</subject><ispartof>IEEE journal of the Electron Devices Society, 2021, Vol.9, p.521-532</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c429t-7d77c27d7c4dbdfffd799c892f7e20bfc1638f176c1179a218e5ad956c5abbbd3</citedby><cites>FETCH-LOGICAL-c429t-7d77c27d7c4dbdfffd799c892f7e20bfc1638f176c1179a218e5ad956c5abbbd3</cites><orcidid>0000-0001-7501-275X ; 0000-0003-1450-5598 ; 0000-0002-6349-8219 ; 0000000314505598 ; 000000017501275X ; 0000000263498219</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9424182$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,864,885,2102,4024,27633,27923,27924,27925,54933</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1826421$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Rakheja, Shaloo</creatorcontrib><creatorcontrib>Li, Kexin</creatorcontrib><creatorcontrib>Dowling, Karen M.</creatorcontrib><creatorcontrib>Conway, Adam M.</creatorcontrib><creatorcontrib>Voss, Lars F.</creatorcontrib><title>Design and Simulation of Near-Terahertz GaN Photoconductive Switches-Operation in the Negative Differential Mobility Regime and Pulse Compression</title><title>IEEE journal of the Electron Devices Society</title><addtitle>JEDS</addtitle><description>The wide bandgap material, Gallium Nitride (GaN), has emerged as the dominant semiconductor material to implement high-electron mobility transistors (HEMTs) that form the basis of RF electronics. GaN is also an excellent material to realize photoconductive switches (PCSS) whose high-frequency performance could exceed that of RF HEMTs. In this paper, we numerically model the output characteristics of a GaN PCSS as a function of the input electrical and optical bias and the device dimensions. Importantly, we show that operating the GaN PCSS in the regime of negative differential mobility significantly benefits its high-frequency performance by compressing the temporal width of the output current pulse, while also enhancing its peak value. We find that when the optically excited carriers are generated in the middle of the active region, the bandwidth of the device is approximately 600 GHz, while delivering an output power exceeding 800 mW with a power gain greater than 35 dB. The output power increases to 1.5 W, and the power gain exceeds 40 dB with a near-terahertz bandwidth (≈ 800 GHz), as the laser source is moved closer to the anode. Finally, we elucidate that under high optical bias with significant electrostatic screening effects, the DC electric field across the device can be boosted to further enhance the performance of the GaN PCSS.</description><subject>Bias</subject><subject>Charge carrier processes</subject><subject>Compressing</subject><subject>Electric fields</subject><subject>Gallium nitride</subject><subject>Gallium nitrides</subject><subject>High electron mobility transistors</subject><subject>high-field transport</subject><subject>near-terahertz electronics</subject><subject>negative differential mobility</subject><subject>Optical pulse compression</subject><subject>Optical switches</subject><subject>Optical triggering</subject><subject>Optimized production technology</subject><subject>Power gain</subject><subject>Power generation</subject><subject>Pulse compression</subject><subject>Radiative recombination</subject><subject>Semiconductor materials</subject><subject>Switches</subject><subject>Terahertz frequencies</subject><subject>wide bandgap semiconductors</subject><issn>2168-6734</issn><issn>2168-6734</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkd9u0zAYxSMEEtPYAyBuLLhOyeckdnyJ2jGGxjbRcW059ufGVRoX2wWNt-CNcZtpwhe2dfQ7x39OUbyFagFQiY9fL1frBa0oLOqKc87gRXFGgXUl43Xz8r_96-Iixm2VRwdMMHZW_F1hdJuJqMmQtdsdRpWcn4i35BZVKB8wqAFD-kOu1C25H3zy2k_moJP7hWT92yU9YCzv9pk7Gd1E0oDZvFEnZOWsxYBTcmok33zvRpceyXfcuB2eDr0_jBHJ0u_2AWPMEW-KV1Zl7eJpPS9-fL58WH4pb-6urpefbkrdUJFKbjjXNM-6Mb2x1houhO4EtRxp1VsNrO4scKYBuFAUOmyVES3Trer73tTnxfWca7zayn1wOxUepVdOngQfNlKF5PSI0oA2NTSGdQIaq9oeeC8M1iLrLMs56_2c5WNyMmqXUA_5oybUSUJHWUMhQx9maB_8zwPGJLf-EKb8Rklbmuto2vpIwUzp4GMMaJ-vBpU8ti2Pbctj2_Kp7ex5N3scIj7zoqFNPrv-B44np-Y</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Rakheja, Shaloo</creator><creator>Li, Kexin</creator><creator>Dowling, Karen M.</creator><creator>Conway, Adam M.</creator><creator>Voss, Lars F.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>OTOTI</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7501-275X</orcidid><orcidid>https://orcid.org/0000-0003-1450-5598</orcidid><orcidid>https://orcid.org/0000-0002-6349-8219</orcidid><orcidid>https://orcid.org/0000000314505598</orcidid><orcidid>https://orcid.org/000000017501275X</orcidid><orcidid>https://orcid.org/0000000263498219</orcidid></search><sort><creationdate>2021</creationdate><title>Design and Simulation of Near-Terahertz GaN Photoconductive Switches-Operation in the Negative Differential Mobility Regime and Pulse Compression</title><author>Rakheja, Shaloo ; Li, Kexin ; Dowling, Karen M. ; Conway, Adam M. ; Voss, Lars F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c429t-7d77c27d7c4dbdfffd799c892f7e20bfc1638f176c1179a218e5ad956c5abbbd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Bias</topic><topic>Charge carrier processes</topic><topic>Compressing</topic><topic>Electric fields</topic><topic>Gallium nitride</topic><topic>Gallium nitrides</topic><topic>High electron mobility transistors</topic><topic>high-field transport</topic><topic>near-terahertz electronics</topic><topic>negative differential mobility</topic><topic>Optical pulse compression</topic><topic>Optical switches</topic><topic>Optical triggering</topic><topic>Optimized production technology</topic><topic>Power gain</topic><topic>Power generation</topic><topic>Pulse compression</topic><topic>Radiative recombination</topic><topic>Semiconductor materials</topic><topic>Switches</topic><topic>Terahertz frequencies</topic><topic>wide bandgap semiconductors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rakheja, Shaloo</creatorcontrib><creatorcontrib>Li, Kexin</creatorcontrib><creatorcontrib>Dowling, Karen M.</creatorcontrib><creatorcontrib>Conway, Adam M.</creatorcontrib><creatorcontrib>Voss, Lars F.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE journal of the Electron Devices Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rakheja, Shaloo</au><au>Li, Kexin</au><au>Dowling, Karen M.</au><au>Conway, Adam M.</au><au>Voss, Lars F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design and Simulation of Near-Terahertz GaN Photoconductive Switches-Operation in the Negative Differential Mobility Regime and Pulse Compression</atitle><jtitle>IEEE journal of the Electron Devices Society</jtitle><stitle>JEDS</stitle><date>2021</date><risdate>2021</risdate><volume>9</volume><spage>521</spage><epage>532</epage><pages>521-532</pages><issn>2168-6734</issn><eissn>2168-6734</eissn><coden>IJEDAC</coden><abstract>The wide bandgap material, Gallium Nitride (GaN), has emerged as the dominant semiconductor material to implement high-electron mobility transistors (HEMTs) that form the basis of RF electronics. GaN is also an excellent material to realize photoconductive switches (PCSS) whose high-frequency performance could exceed that of RF HEMTs. In this paper, we numerically model the output characteristics of a GaN PCSS as a function of the input electrical and optical bias and the device dimensions. Importantly, we show that operating the GaN PCSS in the regime of negative differential mobility significantly benefits its high-frequency performance by compressing the temporal width of the output current pulse, while also enhancing its peak value. We find that when the optically excited carriers are generated in the middle of the active region, the bandwidth of the device is approximately 600 GHz, while delivering an output power exceeding 800 mW with a power gain greater than 35 dB. The output power increases to 1.5 W, and the power gain exceeds 40 dB with a near-terahertz bandwidth (≈ 800 GHz), as the laser source is moved closer to the anode. Finally, we elucidate that under high optical bias with significant electrostatic screening effects, the DC electric field across the device can be boosted to further enhance the performance of the GaN PCSS.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JEDS.2021.3077761</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-7501-275X</orcidid><orcidid>https://orcid.org/0000-0003-1450-5598</orcidid><orcidid>https://orcid.org/0000-0002-6349-8219</orcidid><orcidid>https://orcid.org/0000000314505598</orcidid><orcidid>https://orcid.org/000000017501275X</orcidid><orcidid>https://orcid.org/0000000263498219</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2168-6734
ispartof IEEE journal of the Electron Devices Society, 2021, Vol.9, p.521-532
issn 2168-6734
2168-6734
language eng
recordid cdi_proquest_journals_2526964531
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Bias
Charge carrier processes
Compressing
Electric fields
Gallium nitride
Gallium nitrides
High electron mobility transistors
high-field transport
near-terahertz electronics
negative differential mobility
Optical pulse compression
Optical switches
Optical triggering
Optimized production technology
Power gain
Power generation
Pulse compression
Radiative recombination
Semiconductor materials
Switches
Terahertz frequencies
wide bandgap semiconductors
title Design and Simulation of Near-Terahertz GaN Photoconductive Switches-Operation in the Negative Differential Mobility Regime and Pulse Compression
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T22%3A34%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20and%20Simulation%20of%20Near-Terahertz%20GaN%20Photoconductive%20Switches-Operation%20in%20the%20Negative%20Differential%20Mobility%20Regime%20and%20Pulse%20Compression&rft.jtitle=IEEE%20journal%20of%20the%20Electron%20Devices%20Society&rft.au=Rakheja,%20Shaloo&rft.date=2021&rft.volume=9&rft.spage=521&rft.epage=532&rft.pages=521-532&rft.issn=2168-6734&rft.eissn=2168-6734&rft.coden=IJEDAC&rft_id=info:doi/10.1109/JEDS.2021.3077761&rft_dat=%3Cproquest_osti_%3E2526964531%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2526964531&rft_id=info:pmid/&rft_ieee_id=9424182&rft_doaj_id=oai_doaj_org_article_d1cd314d68914fa5b17b9de391cd64d6&rfr_iscdi=true