On a class of almost Kenmotsu manifolds admitting an Einstein like structure

In the present paper, we introduce the notion of ∗ -gradient ρ -Einstein soliton on a class of almost Kenmotsu manifolds. It is shown that if a ( 2 n + 1 ) -dimensional ( k , μ ) ′ -almost Kenmotsu manifold M admits ∗ -gradient ρ -Einstein soliton with Einstein potential f , then (1) the manifold M...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:São Paulo Journal of Mathematical Sciences 2021-06, Vol.15 (1), p.335-343
Hauptverfasser: Dey, Dibakar, Majhi, Pradip
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 343
container_issue 1
container_start_page 335
container_title São Paulo Journal of Mathematical Sciences
container_volume 15
creator Dey, Dibakar
Majhi, Pradip
description In the present paper, we introduce the notion of ∗ -gradient ρ -Einstein soliton on a class of almost Kenmotsu manifolds. It is shown that if a ( 2 n + 1 ) -dimensional ( k , μ ) ′ -almost Kenmotsu manifold M admits ∗ -gradient ρ -Einstein soliton with Einstein potential f , then (1) the manifold M is locally isometric to H n + 1 ( - 4 ) × R n , (2) the manifold M is ∗ -Ricci flat and (3) the Einstein potential f is harmonic or satisfies a physical Poisson’s equation. Finally, an illustrative example is presented.
doi_str_mv 10.1007/s40863-021-00228-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2526845369</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2526845369</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-4a90010aa1e7d3d3169e5a2059f66d68bec7141d51b1ef9dc61e968e0c584ab23</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EElXpH2CyxGy4c2LHHlFVPkSlLjBbbuJUKYldbGfg3xMIEhu33PI-750eQq4RbhGgukslKFkw4MgAOFcMz8iCFyiZBq7OyQK14kxqqC7JKqUjTCPKSgtYkO3OU0vr3qZEQ0ttP4SU6YvzQ8hppIP1XRv6JlHbDF3OnT9Q6-mm8ym7ztO-e3c05TjWeYzuily0tk9u9buX5O1h87p-Ytvd4_P6fsvqAnVmpdUACNaiq5qimR7VTlgOQrdSNlLtXV1hiY3APbpWN7VEp6VyUAtV2j0vluRm7j3F8DG6lM0xjNFPJw0XXKpSFFJPKT6n6hhSiq41p9gNNn4aBPMtzszizCTO_IgzOEHFDKUp7A8u_lX_Q30BqM5v6g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2526845369</pqid></control><display><type>article</type><title>On a class of almost Kenmotsu manifolds admitting an Einstein like structure</title><source>SpringerNature Journals</source><creator>Dey, Dibakar ; Majhi, Pradip</creator><creatorcontrib>Dey, Dibakar ; Majhi, Pradip</creatorcontrib><description>In the present paper, we introduce the notion of ∗ -gradient ρ -Einstein soliton on a class of almost Kenmotsu manifolds. It is shown that if a ( 2 n + 1 ) -dimensional ( k , μ ) ′ -almost Kenmotsu manifold M admits ∗ -gradient ρ -Einstein soliton with Einstein potential f , then (1) the manifold M is locally isometric to H n + 1 ( - 4 ) × R n , (2) the manifold M is ∗ -Ricci flat and (3) the Einstein potential f is harmonic or satisfies a physical Poisson’s equation. Finally, an illustrative example is presented.</description><identifier>ISSN: 1982-6907</identifier><identifier>EISSN: 2316-9028</identifier><identifier>EISSN: 2306-9028</identifier><identifier>DOI: 10.1007/s40863-021-00228-1</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Mathematics ; Mathematics and Statistics ; Original Article ; Solitary waves</subject><ispartof>São Paulo Journal of Mathematical Sciences, 2021-06, Vol.15 (1), p.335-343</ispartof><rights>Instituto de Matemática e Estatística da Universidade de São Paulo 2021</rights><rights>Instituto de Matemática e Estatística da Universidade de São Paulo 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-4a90010aa1e7d3d3169e5a2059f66d68bec7141d51b1ef9dc61e968e0c584ab23</citedby><cites>FETCH-LOGICAL-c319t-4a90010aa1e7d3d3169e5a2059f66d68bec7141d51b1ef9dc61e968e0c584ab23</cites><orcidid>0000-0001-8992-6501</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40863-021-00228-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40863-021-00228-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Dey, Dibakar</creatorcontrib><creatorcontrib>Majhi, Pradip</creatorcontrib><title>On a class of almost Kenmotsu manifolds admitting an Einstein like structure</title><title>São Paulo Journal of Mathematical Sciences</title><addtitle>São Paulo J. Math. Sci</addtitle><description>In the present paper, we introduce the notion of ∗ -gradient ρ -Einstein soliton on a class of almost Kenmotsu manifolds. It is shown that if a ( 2 n + 1 ) -dimensional ( k , μ ) ′ -almost Kenmotsu manifold M admits ∗ -gradient ρ -Einstein soliton with Einstein potential f , then (1) the manifold M is locally isometric to H n + 1 ( - 4 ) × R n , (2) the manifold M is ∗ -Ricci flat and (3) the Einstein potential f is harmonic or satisfies a physical Poisson’s equation. Finally, an illustrative example is presented.</description><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Original Article</subject><subject>Solitary waves</subject><issn>1982-6907</issn><issn>2316-9028</issn><issn>2306-9028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EElXpH2CyxGy4c2LHHlFVPkSlLjBbbuJUKYldbGfg3xMIEhu33PI-750eQq4RbhGgukslKFkw4MgAOFcMz8iCFyiZBq7OyQK14kxqqC7JKqUjTCPKSgtYkO3OU0vr3qZEQ0ttP4SU6YvzQ8hppIP1XRv6JlHbDF3OnT9Q6-mm8ym7ztO-e3c05TjWeYzuily0tk9u9buX5O1h87p-Ytvd4_P6fsvqAnVmpdUACNaiq5qimR7VTlgOQrdSNlLtXV1hiY3APbpWN7VEp6VyUAtV2j0vluRm7j3F8DG6lM0xjNFPJw0XXKpSFFJPKT6n6hhSiq41p9gNNn4aBPMtzszizCTO_IgzOEHFDKUp7A8u_lX_Q30BqM5v6g</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Dey, Dibakar</creator><creator>Majhi, Pradip</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-8992-6501</orcidid></search><sort><creationdate>20210601</creationdate><title>On a class of almost Kenmotsu manifolds admitting an Einstein like structure</title><author>Dey, Dibakar ; Majhi, Pradip</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-4a90010aa1e7d3d3169e5a2059f66d68bec7141d51b1ef9dc61e968e0c584ab23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Original Article</topic><topic>Solitary waves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dey, Dibakar</creatorcontrib><creatorcontrib>Majhi, Pradip</creatorcontrib><collection>CrossRef</collection><jtitle>São Paulo Journal of Mathematical Sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dey, Dibakar</au><au>Majhi, Pradip</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On a class of almost Kenmotsu manifolds admitting an Einstein like structure</atitle><jtitle>São Paulo Journal of Mathematical Sciences</jtitle><stitle>São Paulo J. Math. Sci</stitle><date>2021-06-01</date><risdate>2021</risdate><volume>15</volume><issue>1</issue><spage>335</spage><epage>343</epage><pages>335-343</pages><issn>1982-6907</issn><eissn>2316-9028</eissn><eissn>2306-9028</eissn><abstract>In the present paper, we introduce the notion of ∗ -gradient ρ -Einstein soliton on a class of almost Kenmotsu manifolds. It is shown that if a ( 2 n + 1 ) -dimensional ( k , μ ) ′ -almost Kenmotsu manifold M admits ∗ -gradient ρ -Einstein soliton with Einstein potential f , then (1) the manifold M is locally isometric to H n + 1 ( - 4 ) × R n , (2) the manifold M is ∗ -Ricci flat and (3) the Einstein potential f is harmonic or satisfies a physical Poisson’s equation. Finally, an illustrative example is presented.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s40863-021-00228-1</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-8992-6501</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1982-6907
ispartof São Paulo Journal of Mathematical Sciences, 2021-06, Vol.15 (1), p.335-343
issn 1982-6907
2316-9028
2306-9028
language eng
recordid cdi_proquest_journals_2526845369
source SpringerNature Journals
subjects Mathematics
Mathematics and Statistics
Original Article
Solitary waves
title On a class of almost Kenmotsu manifolds admitting an Einstein like structure
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T11%3A45%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20a%20class%20of%20almost%20Kenmotsu%20manifolds%20admitting%20an%20Einstein%20like%20structure&rft.jtitle=S%C3%A3o%20Paulo%20Journal%20of%20Mathematical%20Sciences&rft.au=Dey,%20Dibakar&rft.date=2021-06-01&rft.volume=15&rft.issue=1&rft.spage=335&rft.epage=343&rft.pages=335-343&rft.issn=1982-6907&rft.eissn=2316-9028&rft_id=info:doi/10.1007/s40863-021-00228-1&rft_dat=%3Cproquest_cross%3E2526845369%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2526845369&rft_id=info:pmid/&rfr_iscdi=true