A monotonicity result under symmetry and Morse index constraints in the plane
This paper deals with solutions of semilinear elliptic equations of the type \[ \left\{\begin{array}{@{}ll} -\Delta u = f(|x|, u) \qquad & \text{ in } \Omega, \\ u= 0 & \text{ on } \partial \Omega, \end{array} \right. \] where Ω is a radially symmetric domain of the plane that can be bounded...
Gespeichert in:
Veröffentlicht in: | Proceedings of the Royal Society of Edinburgh. Section A. Mathematics 2021-06, Vol.151 (3), p.885-915 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 915 |
---|---|
container_issue | 3 |
container_start_page | 885 |
container_title | Proceedings of the Royal Society of Edinburgh. Section A. Mathematics |
container_volume | 151 |
creator | Gladiali, Francesca |
description | This paper deals with solutions of semilinear elliptic equations of the type
\[ \left\{\begin{array}{@{}ll} -\Delta u = f(|x|, u) \qquad & \text{ in } \Omega, \\ u= 0 & \text{ on } \partial \Omega, \end{array} \right. \]
where Ω is a radially symmetric domain of the plane that can be bounded or unbounded. We consider solutions u that are invariant by rotations of a certain angle θ and which have a bound on their Morse index in spaces of functions invariant by these rotations. We can prove that or u is radial, or, else, there exists a direction $e\in \mathcal {S}$ such that u is symmetric with respect to e and it is strictly monotone in the angular variable in a sector of angle θ/2. The result applies to least-energy and nodal least-energy solutions in spaces of functions invariant by rotations and produces multiplicity results. |
doi_str_mv | 10.1017/prm.2020.43 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2526807603</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_prm_2020_43</cupid><sourcerecordid>2526807603</sourcerecordid><originalsourceid>FETCH-LOGICAL-c299t-2eca83f2749202650ce8d6e58bab97cb460408c45f8128a80ea3a61c4c2a4b003</originalsourceid><addsrcrecordid>eNptkE9LxDAQxYMouK6e_AIBj9J1kqZJelwW_8EuXvRc0jTVLk1SkxTst7fLLnjxNMzMj_ceD6FbAisCRDwMwa4oUFix_AwtCBN5Jghl52gBOciMEigu0VWMewDgshALtFtj651P3nW6SxMOJo59wqNrTMBxstakMGHlGrzzIRrczY8frL2LKajOpThfcPoyeOiVM9foolV9NDenuUQfT4_vm5ds-_b8ullvM03LMmXUaCXzlgpWzml5AdrIhptC1qouha4ZBwZSs6KVhEolwahccaKZporVAPkS3R11h-C_RxNTtfdjcLNlRQvKJQgO-UzdHykdfIzBtNUQOqvCVBGoDn3Nu60OfVXsQGcnWtk6dM2n-RP9j_8F39hszw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2526807603</pqid></control><display><type>article</type><title>A monotonicity result under symmetry and Morse index constraints in the plane</title><source>Cambridge University Press Journals Complete</source><creator>Gladiali, Francesca</creator><creatorcontrib>Gladiali, Francesca</creatorcontrib><description>This paper deals with solutions of semilinear elliptic equations of the type
\[ \left\{\begin{array}{@{}ll} -\Delta u = f(|x|, u) \qquad & \text{ in } \Omega, \\ u= 0 & \text{ on } \partial \Omega, \end{array} \right. \]
where Ω is a radially symmetric domain of the plane that can be bounded or unbounded. We consider solutions u that are invariant by rotations of a certain angle θ and which have a bound on their Morse index in spaces of functions invariant by these rotations. We can prove that or u is radial, or, else, there exists a direction $e\in \mathcal {S}$ such that u is symmetric with respect to e and it is strictly monotone in the angular variable in a sector of angle θ/2. The result applies to least-energy and nodal least-energy solutions in spaces of functions invariant by rotations and produces multiplicity results.</description><identifier>ISSN: 0308-2105</identifier><identifier>EISSN: 1473-7124</identifier><identifier>DOI: 10.1017/prm.2020.43</identifier><language>eng</language><publisher>Edinburgh, UK: Royal Society of Edinburgh Scotland Foundation</publisher><subject>Arrays ; Elliptic functions ; Invariants ; Symmetry</subject><ispartof>Proceedings of the Royal Society of Edinburgh. Section A. Mathematics, 2021-06, Vol.151 (3), p.885-915</ispartof><rights>Copyright © The Author(s), 2020. Published by Cambridge University Press on behalf of The Royal Society of Edinburgh</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c299t-2eca83f2749202650ce8d6e58bab97cb460408c45f8128a80ea3a61c4c2a4b003</citedby><cites>FETCH-LOGICAL-c299t-2eca83f2749202650ce8d6e58bab97cb460408c45f8128a80ea3a61c4c2a4b003</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0308210520000438/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,780,784,27924,27925,55628</link.rule.ids></links><search><creatorcontrib>Gladiali, Francesca</creatorcontrib><title>A monotonicity result under symmetry and Morse index constraints in the plane</title><title>Proceedings of the Royal Society of Edinburgh. Section A. Mathematics</title><addtitle>Proceedings of the Royal Society of Edinburgh: Section A Mathematics</addtitle><description>This paper deals with solutions of semilinear elliptic equations of the type
\[ \left\{\begin{array}{@{}ll} -\Delta u = f(|x|, u) \qquad & \text{ in } \Omega, \\ u= 0 & \text{ on } \partial \Omega, \end{array} \right. \]
where Ω is a radially symmetric domain of the plane that can be bounded or unbounded. We consider solutions u that are invariant by rotations of a certain angle θ and which have a bound on their Morse index in spaces of functions invariant by these rotations. We can prove that or u is radial, or, else, there exists a direction $e\in \mathcal {S}$ such that u is symmetric with respect to e and it is strictly monotone in the angular variable in a sector of angle θ/2. The result applies to least-energy and nodal least-energy solutions in spaces of functions invariant by rotations and produces multiplicity results.</description><subject>Arrays</subject><subject>Elliptic functions</subject><subject>Invariants</subject><subject>Symmetry</subject><issn>0308-2105</issn><issn>1473-7124</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNptkE9LxDAQxYMouK6e_AIBj9J1kqZJelwW_8EuXvRc0jTVLk1SkxTst7fLLnjxNMzMj_ceD6FbAisCRDwMwa4oUFix_AwtCBN5Jghl52gBOciMEigu0VWMewDgshALtFtj651P3nW6SxMOJo59wqNrTMBxstakMGHlGrzzIRrczY8frL2LKajOpThfcPoyeOiVM9foolV9NDenuUQfT4_vm5ds-_b8ullvM03LMmXUaCXzlgpWzml5AdrIhptC1qouha4ZBwZSs6KVhEolwahccaKZporVAPkS3R11h-C_RxNTtfdjcLNlRQvKJQgO-UzdHykdfIzBtNUQOqvCVBGoDn3Nu60OfVXsQGcnWtk6dM2n-RP9j_8F39hszw</recordid><startdate>202106</startdate><enddate>202106</enddate><creator>Gladiali, Francesca</creator><general>Royal Society of Edinburgh Scotland Foundation</general><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>202106</creationdate><title>A monotonicity result under symmetry and Morse index constraints in the plane</title><author>Gladiali, Francesca</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c299t-2eca83f2749202650ce8d6e58bab97cb460408c45f8128a80ea3a61c4c2a4b003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Arrays</topic><topic>Elliptic functions</topic><topic>Invariants</topic><topic>Symmetry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gladiali, Francesca</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Proceedings of the Royal Society of Edinburgh. Section A. Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gladiali, Francesca</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A monotonicity result under symmetry and Morse index constraints in the plane</atitle><jtitle>Proceedings of the Royal Society of Edinburgh. Section A. Mathematics</jtitle><addtitle>Proceedings of the Royal Society of Edinburgh: Section A Mathematics</addtitle><date>2021-06</date><risdate>2021</risdate><volume>151</volume><issue>3</issue><spage>885</spage><epage>915</epage><pages>885-915</pages><issn>0308-2105</issn><eissn>1473-7124</eissn><abstract>This paper deals with solutions of semilinear elliptic equations of the type
\[ \left\{\begin{array}{@{}ll} -\Delta u = f(|x|, u) \qquad & \text{ in } \Omega, \\ u= 0 & \text{ on } \partial \Omega, \end{array} \right. \]
where Ω is a radially symmetric domain of the plane that can be bounded or unbounded. We consider solutions u that are invariant by rotations of a certain angle θ and which have a bound on their Morse index in spaces of functions invariant by these rotations. We can prove that or u is radial, or, else, there exists a direction $e\in \mathcal {S}$ such that u is symmetric with respect to e and it is strictly monotone in the angular variable in a sector of angle θ/2. The result applies to least-energy and nodal least-energy solutions in spaces of functions invariant by rotations and produces multiplicity results.</abstract><cop>Edinburgh, UK</cop><pub>Royal Society of Edinburgh Scotland Foundation</pub><doi>10.1017/prm.2020.43</doi><tpages>31</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0308-2105 |
ispartof | Proceedings of the Royal Society of Edinburgh. Section A. Mathematics, 2021-06, Vol.151 (3), p.885-915 |
issn | 0308-2105 1473-7124 |
language | eng |
recordid | cdi_proquest_journals_2526807603 |
source | Cambridge University Press Journals Complete |
subjects | Arrays Elliptic functions Invariants Symmetry |
title | A monotonicity result under symmetry and Morse index constraints in the plane |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T10%3A37%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20monotonicity%20result%20under%20symmetry%20and%20Morse%20index%20constraints%20in%20the%20plane&rft.jtitle=Proceedings%20of%20the%20Royal%20Society%20of%20Edinburgh.%20Section%20A.%20Mathematics&rft.au=Gladiali,%20Francesca&rft.date=2021-06&rft.volume=151&rft.issue=3&rft.spage=885&rft.epage=915&rft.pages=885-915&rft.issn=0308-2105&rft.eissn=1473-7124&rft_id=info:doi/10.1017/prm.2020.43&rft_dat=%3Cproquest_cross%3E2526807603%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2526807603&rft_id=info:pmid/&rft_cupid=10_1017_prm_2020_43&rfr_iscdi=true |