Peak force tapping atomic force microscopy for advancing cell and molecular biology
The advent of atomic force microscopy (AFM) provides an exciting tool to detect molecular and cellular behaviors under aqueous conditions. AFM is able to not only visualize the surface topography of the specimens, but also can quantify the mechanical properties of the specimens by force spectroscopy...
Gespeichert in:
Veröffentlicht in: | Nanoscale 2021-05, Vol.13 (18), p.8358-8375 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8375 |
---|---|
container_issue | 18 |
container_start_page | 8358 |
container_title | Nanoscale |
container_volume | 13 |
creator | Li, Mi Xi, Ning Liu, Lianqing |
description | The advent of atomic force microscopy (AFM) provides an exciting tool to detect molecular and cellular behaviors under aqueous conditions. AFM is able to not only visualize the surface topography of the specimens, but also can quantify the mechanical properties of the specimens by force spectroscopy assay. Nevertheless, integrating AFM topographic imaging with force spectroscopy assay has long been limited due to the low spatiotemporal resolution. In recent years, the appearance of a new AFM imaging mode called peak force tapping (PFT) has shattered this limit. PFT allows AFM to simultaneously acquire the topography and mechanical properties of biological samples with unprecedented spatiotemporal resolution. The practical applications of PFT in the field of life sciences in the past decade have demonstrated the excellent capabilities of PFT in characterizing the fine structures and mechanics of living biological systems in their native states, offering novel possibilities to reveal the underlying mechanisms guiding physiological/pathological activities. In this paper, the recent progress in cell and molecular biology that has been made with the utilization of PFT is summarized, and future perspectives for further progression and biomedical applications of PFT are provided.
Recent advances in peak force tapping (PFT)-based atomic force microscopy (AFM) imaging for applications in cell and molecular biology are summarized. Future perspectives for future progression and biomedical applications are provided. |
doi_str_mv | 10.1039/d1nr01303c |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_journals_2526294585</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2526294585</sourcerecordid><originalsourceid>FETCH-LOGICAL-c444t-f137e7926127ebc5566bf1ba529c65986127601825b691207ed7489d4dbd94e93</originalsourceid><addsrcrecordid>eNpd0VtLwzAUB_AgipvTF9-Vgi8iVHNv8yjzCkPFy3NJk3R0tk2XtMK-vY2bE3zK4eTH4eQfAI4RvESQiCuNGgcRgUTtgDGGFMaEJHh3W3M6AgfeLyDkgnCyD0aECEQoJ2Pw9mLkZ1RYp0zUybYtm3kkO1uXatMcKme9su0qNCKpv2SjglKmqiLZ6Ki2lVF9JV2Ul7ay89Uh2Ctk5c3R5pyAj7vb9-lDPHu-f5xez2JFKe3iApHEJAJzhBOTK8Y4zwuUS4aF4kykoc8hSjHLuUAYJkYnNBWa6lwLagSZgPP13NbZZW98l9WlD2vJxtjeZ5ghkULBKRvo2T-6sL1rhu0GhTkWlKVBXaxVeLJ3pshaV9bSrTIEsxB1doOeXn-ing74dDOyz2ujt_Q32wGcrIHzanv791fkG3nPgUI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2526294585</pqid></control><display><type>article</type><title>Peak force tapping atomic force microscopy for advancing cell and molecular biology</title><source>MEDLINE</source><source>Royal Society Of Chemistry Journals</source><creator>Li, Mi ; Xi, Ning ; Liu, Lianqing</creator><creatorcontrib>Li, Mi ; Xi, Ning ; Liu, Lianqing</creatorcontrib><description>The advent of atomic force microscopy (AFM) provides an exciting tool to detect molecular and cellular behaviors under aqueous conditions. AFM is able to not only visualize the surface topography of the specimens, but also can quantify the mechanical properties of the specimens by force spectroscopy assay. Nevertheless, integrating AFM topographic imaging with force spectroscopy assay has long been limited due to the low spatiotemporal resolution. In recent years, the appearance of a new AFM imaging mode called peak force tapping (PFT) has shattered this limit. PFT allows AFM to simultaneously acquire the topography and mechanical properties of biological samples with unprecedented spatiotemporal resolution. The practical applications of PFT in the field of life sciences in the past decade have demonstrated the excellent capabilities of PFT in characterizing the fine structures and mechanics of living biological systems in their native states, offering novel possibilities to reveal the underlying mechanisms guiding physiological/pathological activities. In this paper, the recent progress in cell and molecular biology that has been made with the utilization of PFT is summarized, and future perspectives for further progression and biomedical applications of PFT are provided.
Recent advances in peak force tapping (PFT)-based atomic force microscopy (AFM) imaging for applications in cell and molecular biology are summarized. Future perspectives for future progression and biomedical applications are provided.</description><identifier>ISSN: 2040-3364</identifier><identifier>EISSN: 2040-3372</identifier><identifier>DOI: 10.1039/d1nr01303c</identifier><identifier>PMID: 33913463</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Atomic force microscopy ; Biological properties ; Biology ; Biomedical materials ; Cell Membrane ; Mechanical Phenomena ; Mechanical properties ; Microscopy ; Microscopy, Atomic Force ; Molecular Biology ; Spectroscopy ; Spectrum analysis ; Topography</subject><ispartof>Nanoscale, 2021-05, Vol.13 (18), p.8358-8375</ispartof><rights>Copyright Royal Society of Chemistry 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c444t-f137e7926127ebc5566bf1ba529c65986127601825b691207ed7489d4dbd94e93</citedby><cites>FETCH-LOGICAL-c444t-f137e7926127ebc5566bf1ba529c65986127601825b691207ed7489d4dbd94e93</cites><orcidid>0000-0002-8379-0057 ; 0000-0002-2271-5870</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33913463$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Mi</creatorcontrib><creatorcontrib>Xi, Ning</creatorcontrib><creatorcontrib>Liu, Lianqing</creatorcontrib><title>Peak force tapping atomic force microscopy for advancing cell and molecular biology</title><title>Nanoscale</title><addtitle>Nanoscale</addtitle><description>The advent of atomic force microscopy (AFM) provides an exciting tool to detect molecular and cellular behaviors under aqueous conditions. AFM is able to not only visualize the surface topography of the specimens, but also can quantify the mechanical properties of the specimens by force spectroscopy assay. Nevertheless, integrating AFM topographic imaging with force spectroscopy assay has long been limited due to the low spatiotemporal resolution. In recent years, the appearance of a new AFM imaging mode called peak force tapping (PFT) has shattered this limit. PFT allows AFM to simultaneously acquire the topography and mechanical properties of biological samples with unprecedented spatiotemporal resolution. The practical applications of PFT in the field of life sciences in the past decade have demonstrated the excellent capabilities of PFT in characterizing the fine structures and mechanics of living biological systems in their native states, offering novel possibilities to reveal the underlying mechanisms guiding physiological/pathological activities. In this paper, the recent progress in cell and molecular biology that has been made with the utilization of PFT is summarized, and future perspectives for further progression and biomedical applications of PFT are provided.
Recent advances in peak force tapping (PFT)-based atomic force microscopy (AFM) imaging for applications in cell and molecular biology are summarized. Future perspectives for future progression and biomedical applications are provided.</description><subject>Atomic force microscopy</subject><subject>Biological properties</subject><subject>Biology</subject><subject>Biomedical materials</subject><subject>Cell Membrane</subject><subject>Mechanical Phenomena</subject><subject>Mechanical properties</subject><subject>Microscopy</subject><subject>Microscopy, Atomic Force</subject><subject>Molecular Biology</subject><subject>Spectroscopy</subject><subject>Spectrum analysis</subject><subject>Topography</subject><issn>2040-3364</issn><issn>2040-3372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpd0VtLwzAUB_AgipvTF9-Vgi8iVHNv8yjzCkPFy3NJk3R0tk2XtMK-vY2bE3zK4eTH4eQfAI4RvESQiCuNGgcRgUTtgDGGFMaEJHh3W3M6AgfeLyDkgnCyD0aECEQoJ2Pw9mLkZ1RYp0zUybYtm3kkO1uXatMcKme9su0qNCKpv2SjglKmqiLZ6Ki2lVF9JV2Ul7ay89Uh2Ctk5c3R5pyAj7vb9-lDPHu-f5xez2JFKe3iApHEJAJzhBOTK8Y4zwuUS4aF4kykoc8hSjHLuUAYJkYnNBWa6lwLagSZgPP13NbZZW98l9WlD2vJxtjeZ5ghkULBKRvo2T-6sL1rhu0GhTkWlKVBXaxVeLJ3pshaV9bSrTIEsxB1doOeXn-ing74dDOyz2ujt_Q32wGcrIHzanv791fkG3nPgUI</recordid><startdate>20210513</startdate><enddate>20210513</enddate><creator>Li, Mi</creator><creator>Xi, Ning</creator><creator>Liu, Lianqing</creator><general>Royal Society of Chemistry</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8379-0057</orcidid><orcidid>https://orcid.org/0000-0002-2271-5870</orcidid></search><sort><creationdate>20210513</creationdate><title>Peak force tapping atomic force microscopy for advancing cell and molecular biology</title><author>Li, Mi ; Xi, Ning ; Liu, Lianqing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c444t-f137e7926127ebc5566bf1ba529c65986127601825b691207ed7489d4dbd94e93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Atomic force microscopy</topic><topic>Biological properties</topic><topic>Biology</topic><topic>Biomedical materials</topic><topic>Cell Membrane</topic><topic>Mechanical Phenomena</topic><topic>Mechanical properties</topic><topic>Microscopy</topic><topic>Microscopy, Atomic Force</topic><topic>Molecular Biology</topic><topic>Spectroscopy</topic><topic>Spectrum analysis</topic><topic>Topography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Mi</creatorcontrib><creatorcontrib>Xi, Ning</creatorcontrib><creatorcontrib>Liu, Lianqing</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Nanoscale</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Mi</au><au>Xi, Ning</au><au>Liu, Lianqing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Peak force tapping atomic force microscopy for advancing cell and molecular biology</atitle><jtitle>Nanoscale</jtitle><addtitle>Nanoscale</addtitle><date>2021-05-13</date><risdate>2021</risdate><volume>13</volume><issue>18</issue><spage>8358</spage><epage>8375</epage><pages>8358-8375</pages><issn>2040-3364</issn><eissn>2040-3372</eissn><abstract>The advent of atomic force microscopy (AFM) provides an exciting tool to detect molecular and cellular behaviors under aqueous conditions. AFM is able to not only visualize the surface topography of the specimens, but also can quantify the mechanical properties of the specimens by force spectroscopy assay. Nevertheless, integrating AFM topographic imaging with force spectroscopy assay has long been limited due to the low spatiotemporal resolution. In recent years, the appearance of a new AFM imaging mode called peak force tapping (PFT) has shattered this limit. PFT allows AFM to simultaneously acquire the topography and mechanical properties of biological samples with unprecedented spatiotemporal resolution. The practical applications of PFT in the field of life sciences in the past decade have demonstrated the excellent capabilities of PFT in characterizing the fine structures and mechanics of living biological systems in their native states, offering novel possibilities to reveal the underlying mechanisms guiding physiological/pathological activities. In this paper, the recent progress in cell and molecular biology that has been made with the utilization of PFT is summarized, and future perspectives for further progression and biomedical applications of PFT are provided.
Recent advances in peak force tapping (PFT)-based atomic force microscopy (AFM) imaging for applications in cell and molecular biology are summarized. Future perspectives for future progression and biomedical applications are provided.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>33913463</pmid><doi>10.1039/d1nr01303c</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-8379-0057</orcidid><orcidid>https://orcid.org/0000-0002-2271-5870</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2040-3364 |
ispartof | Nanoscale, 2021-05, Vol.13 (18), p.8358-8375 |
issn | 2040-3364 2040-3372 |
language | eng |
recordid | cdi_proquest_journals_2526294585 |
source | MEDLINE; Royal Society Of Chemistry Journals |
subjects | Atomic force microscopy Biological properties Biology Biomedical materials Cell Membrane Mechanical Phenomena Mechanical properties Microscopy Microscopy, Atomic Force Molecular Biology Spectroscopy Spectrum analysis Topography |
title | Peak force tapping atomic force microscopy for advancing cell and molecular biology |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T03%3A28%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Peak%20force%20tapping%20atomic%20force%20microscopy%20for%20advancing%20cell%20and%20molecular%20biology&rft.jtitle=Nanoscale&rft.au=Li,%20Mi&rft.date=2021-05-13&rft.volume=13&rft.issue=18&rft.spage=8358&rft.epage=8375&rft.pages=8358-8375&rft.issn=2040-3364&rft.eissn=2040-3372&rft_id=info:doi/10.1039/d1nr01303c&rft_dat=%3Cproquest_pubme%3E2526294585%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2526294585&rft_id=info:pmid/33913463&rfr_iscdi=true |