GSPMD: General and Scalable Parallelization for ML Computation Graphs

We present GSPMD, an automatic, compiler-based parallelization system for common machine learning computations. It allows users to write programs in the same way as for a single device, then give hints through a few annotations on how to distribute tensors, based on which GSPMD will parallelize the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2021-12
Hauptverfasser: Xu, Yuanzhong, Lee, HyoukJoong, Chen, Dehao, Hechtman, Blake, Huang, Yanping, Joshi, Rahul, Krikun, Maxim, Lepikhin, Dmitry, Ly, Andy, Maggioni, Marcello, Pang, Ruoming, Shazeer, Noam, Wang, Shibo, Wang, Tao, Wu, Yonghui, Chen, Zhifeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Xu, Yuanzhong
Lee, HyoukJoong
Chen, Dehao
Hechtman, Blake
Huang, Yanping
Joshi, Rahul
Krikun, Maxim
Lepikhin, Dmitry
Ly, Andy
Maggioni, Marcello
Pang, Ruoming
Shazeer, Noam
Wang, Shibo
Wang, Tao
Wu, Yonghui
Chen, Zhifeng
description We present GSPMD, an automatic, compiler-based parallelization system for common machine learning computations. It allows users to write programs in the same way as for a single device, then give hints through a few annotations on how to distribute tensors, based on which GSPMD will parallelize the computation. Its representation of partitioning is simple yet general, allowing it to express different or mixed paradigms of parallelism on a wide variety of models. GSPMD infers the partitioning for every operator based on limited user annotations, making it convenient to scale existing single-device programs. It solves several technical challenges for production usage, allowing GSPMD to achieve 50% to 62% compute utilization on up to 2048 Cloud TPUv3 cores for models with up to one trillion parameters.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2525908537</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2525908537</sourcerecordid><originalsourceid>FETCH-proquest_journals_25259085373</originalsourceid><addsrcrecordid>eNqNisEKgkAUAJcgSMp_eNBZ2N62aV3N7JAQ2F1etZKy7dquXvr6hPqATgMzM2EBCrGKkjXijIXet5xz3MQopQhYlpfnYr-DXBnlSAOZO5Q30nTVCs40Kq1086a-sQZq66A4QWqf3dB_Ve6oe_gFm9akvQp_nLPlIbukx6hz9jUo31etHZwZU4US5ZYnUsTiv-sD2_Y55g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2525908537</pqid></control><display><type>article</type><title>GSPMD: General and Scalable Parallelization for ML Computation Graphs</title><source>Free E- Journals</source><creator>Xu, Yuanzhong ; Lee, HyoukJoong ; Chen, Dehao ; Hechtman, Blake ; Huang, Yanping ; Joshi, Rahul ; Krikun, Maxim ; Lepikhin, Dmitry ; Ly, Andy ; Maggioni, Marcello ; Pang, Ruoming ; Shazeer, Noam ; Wang, Shibo ; Wang, Tao ; Wu, Yonghui ; Chen, Zhifeng</creator><creatorcontrib>Xu, Yuanzhong ; Lee, HyoukJoong ; Chen, Dehao ; Hechtman, Blake ; Huang, Yanping ; Joshi, Rahul ; Krikun, Maxim ; Lepikhin, Dmitry ; Ly, Andy ; Maggioni, Marcello ; Pang, Ruoming ; Shazeer, Noam ; Wang, Shibo ; Wang, Tao ; Wu, Yonghui ; Chen, Zhifeng</creatorcontrib><description>We present GSPMD, an automatic, compiler-based parallelization system for common machine learning computations. It allows users to write programs in the same way as for a single device, then give hints through a few annotations on how to distribute tensors, based on which GSPMD will parallelize the computation. Its representation of partitioning is simple yet general, allowing it to express different or mixed paradigms of parallelism on a wide variety of models. GSPMD infers the partitioning for every operator based on limited user annotations, making it convenient to scale existing single-device programs. It solves several technical challenges for production usage, allowing GSPMD to achieve 50% to 62% compute utilization on up to 2048 Cloud TPUv3 cores for models with up to one trillion parameters.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Annotations ; Computation ; Graphs ; Machine learning ; Parallel processing ; Partitioning ; Run time (computers) ; Tensors</subject><ispartof>arXiv.org, 2021-12</ispartof><rights>2021. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>777,781</link.rule.ids></links><search><creatorcontrib>Xu, Yuanzhong</creatorcontrib><creatorcontrib>Lee, HyoukJoong</creatorcontrib><creatorcontrib>Chen, Dehao</creatorcontrib><creatorcontrib>Hechtman, Blake</creatorcontrib><creatorcontrib>Huang, Yanping</creatorcontrib><creatorcontrib>Joshi, Rahul</creatorcontrib><creatorcontrib>Krikun, Maxim</creatorcontrib><creatorcontrib>Lepikhin, Dmitry</creatorcontrib><creatorcontrib>Ly, Andy</creatorcontrib><creatorcontrib>Maggioni, Marcello</creatorcontrib><creatorcontrib>Pang, Ruoming</creatorcontrib><creatorcontrib>Shazeer, Noam</creatorcontrib><creatorcontrib>Wang, Shibo</creatorcontrib><creatorcontrib>Wang, Tao</creatorcontrib><creatorcontrib>Wu, Yonghui</creatorcontrib><creatorcontrib>Chen, Zhifeng</creatorcontrib><title>GSPMD: General and Scalable Parallelization for ML Computation Graphs</title><title>arXiv.org</title><description>We present GSPMD, an automatic, compiler-based parallelization system for common machine learning computations. It allows users to write programs in the same way as for a single device, then give hints through a few annotations on how to distribute tensors, based on which GSPMD will parallelize the computation. Its representation of partitioning is simple yet general, allowing it to express different or mixed paradigms of parallelism on a wide variety of models. GSPMD infers the partitioning for every operator based on limited user annotations, making it convenient to scale existing single-device programs. It solves several technical challenges for production usage, allowing GSPMD to achieve 50% to 62% compute utilization on up to 2048 Cloud TPUv3 cores for models with up to one trillion parameters.</description><subject>Annotations</subject><subject>Computation</subject><subject>Graphs</subject><subject>Machine learning</subject><subject>Parallel processing</subject><subject>Partitioning</subject><subject>Run time (computers)</subject><subject>Tensors</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNisEKgkAUAJcgSMp_eNBZ2N62aV3N7JAQ2F1etZKy7dquXvr6hPqATgMzM2EBCrGKkjXijIXet5xz3MQopQhYlpfnYr-DXBnlSAOZO5Q30nTVCs40Kq1086a-sQZq66A4QWqf3dB_Ve6oe_gFm9akvQp_nLPlIbukx6hz9jUo31etHZwZU4US5ZYnUsTiv-sD2_Y55g</recordid><startdate>20211223</startdate><enddate>20211223</enddate><creator>Xu, Yuanzhong</creator><creator>Lee, HyoukJoong</creator><creator>Chen, Dehao</creator><creator>Hechtman, Blake</creator><creator>Huang, Yanping</creator><creator>Joshi, Rahul</creator><creator>Krikun, Maxim</creator><creator>Lepikhin, Dmitry</creator><creator>Ly, Andy</creator><creator>Maggioni, Marcello</creator><creator>Pang, Ruoming</creator><creator>Shazeer, Noam</creator><creator>Wang, Shibo</creator><creator>Wang, Tao</creator><creator>Wu, Yonghui</creator><creator>Chen, Zhifeng</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20211223</creationdate><title>GSPMD: General and Scalable Parallelization for ML Computation Graphs</title><author>Xu, Yuanzhong ; Lee, HyoukJoong ; Chen, Dehao ; Hechtman, Blake ; Huang, Yanping ; Joshi, Rahul ; Krikun, Maxim ; Lepikhin, Dmitry ; Ly, Andy ; Maggioni, Marcello ; Pang, Ruoming ; Shazeer, Noam ; Wang, Shibo ; Wang, Tao ; Wu, Yonghui ; Chen, Zhifeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_25259085373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Annotations</topic><topic>Computation</topic><topic>Graphs</topic><topic>Machine learning</topic><topic>Parallel processing</topic><topic>Partitioning</topic><topic>Run time (computers)</topic><topic>Tensors</topic><toplevel>online_resources</toplevel><creatorcontrib>Xu, Yuanzhong</creatorcontrib><creatorcontrib>Lee, HyoukJoong</creatorcontrib><creatorcontrib>Chen, Dehao</creatorcontrib><creatorcontrib>Hechtman, Blake</creatorcontrib><creatorcontrib>Huang, Yanping</creatorcontrib><creatorcontrib>Joshi, Rahul</creatorcontrib><creatorcontrib>Krikun, Maxim</creatorcontrib><creatorcontrib>Lepikhin, Dmitry</creatorcontrib><creatorcontrib>Ly, Andy</creatorcontrib><creatorcontrib>Maggioni, Marcello</creatorcontrib><creatorcontrib>Pang, Ruoming</creatorcontrib><creatorcontrib>Shazeer, Noam</creatorcontrib><creatorcontrib>Wang, Shibo</creatorcontrib><creatorcontrib>Wang, Tao</creatorcontrib><creatorcontrib>Wu, Yonghui</creatorcontrib><creatorcontrib>Chen, Zhifeng</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Yuanzhong</au><au>Lee, HyoukJoong</au><au>Chen, Dehao</au><au>Hechtman, Blake</au><au>Huang, Yanping</au><au>Joshi, Rahul</au><au>Krikun, Maxim</au><au>Lepikhin, Dmitry</au><au>Ly, Andy</au><au>Maggioni, Marcello</au><au>Pang, Ruoming</au><au>Shazeer, Noam</au><au>Wang, Shibo</au><au>Wang, Tao</au><au>Wu, Yonghui</au><au>Chen, Zhifeng</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>GSPMD: General and Scalable Parallelization for ML Computation Graphs</atitle><jtitle>arXiv.org</jtitle><date>2021-12-23</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>We present GSPMD, an automatic, compiler-based parallelization system for common machine learning computations. It allows users to write programs in the same way as for a single device, then give hints through a few annotations on how to distribute tensors, based on which GSPMD will parallelize the computation. Its representation of partitioning is simple yet general, allowing it to express different or mixed paradigms of parallelism on a wide variety of models. GSPMD infers the partitioning for every operator based on limited user annotations, making it convenient to scale existing single-device programs. It solves several technical challenges for production usage, allowing GSPMD to achieve 50% to 62% compute utilization on up to 2048 Cloud TPUv3 cores for models with up to one trillion parameters.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2021-12
issn 2331-8422
language eng
recordid cdi_proquest_journals_2525908537
source Free E- Journals
subjects Annotations
Computation
Graphs
Machine learning
Parallel processing
Partitioning
Run time (computers)
Tensors
title GSPMD: General and Scalable Parallelization for ML Computation Graphs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T17%3A05%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=GSPMD:%20General%20and%20Scalable%20Parallelization%20for%20ML%20Computation%20Graphs&rft.jtitle=arXiv.org&rft.au=Xu,%20Yuanzhong&rft.date=2021-12-23&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2525908537%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2525908537&rft_id=info:pmid/&rfr_iscdi=true