Understanding the environmental roles of herbicides on cyanobacteria, cyanotoxins, and cyanoHABs
Agrochemicals such as herbicides change the physical and chemical conditions of aquatic ecosystems and alter the community structure and dynamics of phytoplankton. Cyanobacteria are photosynthetic organisms found at the base of aquatic food chains. When cyanobacteria form blooms and produce toxins,...
Gespeichert in:
Veröffentlicht in: | Aquatic ecology 2021-06, Vol.55 (2), p.347-361 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 361 |
---|---|
container_issue | 2 |
container_start_page | 347 |
container_title | Aquatic ecology |
container_volume | 55 |
creator | Brêda-Alves, Fernanda de Oliveira Fernandes, Valéria Chia, Mathias Ahii |
description | Agrochemicals such as herbicides change the physical and chemical conditions of aquatic ecosystems and alter the community structure and dynamics of phytoplankton. Cyanobacteria are photosynthetic organisms found at the base of aquatic food chains. When cyanobacteria form blooms and produce toxins, they harm humans and the environment. Herbicides contaminate the aquatic environment when they are leached and transported via surface runoff from farms and industries. In this review, we show that these compounds have different mechanisms of action, but at high concentrations, they cause oxidative stress, interfere with the normal functioning of enzymes, and change the metabolic profile of microalgae and cyanobacteria. This paper demonstrates that at environmentally relevant concentrations, some herbicides facilitate the formation of cyanobacterial harmful algal blooms (cyanoHABs). The formation of blooms is driven by the tolerance of cyanobacteria to herbicides, where some of these compounds are degraded and converted into non-toxic forms. The degradation by-products are also used as a source of nutrients to support cyanobacterial growth. This adaptation sometimes leads to higher concentrations of bioactive compounds such as cyanotoxins in the aquatic environment. The increased levels of cyanotoxins and herbicides in water bodies can trigger a cascading toxicological effect on non-targeted organisms and the aquatic food chain. Despite the evidence confirming herbicides influence the growth of cyanobacteria and alter the structure of the phytoplankton community toward the formation of cyanoHABs, there is a lot that remains to be done to fully understand their impact on these organisms. |
doi_str_mv | 10.1007/s10452-021-09849-2 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2525901470</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A661660223</galeid><sourcerecordid>A661660223</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-2a0b0fd9a9b5ec2cca2ae89ebf5da1a4a0e0ee7e3db7a12d4734a38f260af47e3</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYsoqKtfwFPBq9XJtOmf4yrqCoIXPcdpOtmN7CZrUkW_vdEK3iSHyTzeb2Z4WXYi4FwANBdRQCWxABQFdG3VFbiTHQjZlIUUKHfTv2zrAmXb7meHMb4AQAcNHmTPT27gEEdyg3XLfFxxzu7dBu827EZa58GvOebe5CsOvdV2-O5crj_J-Z70yMHS2dSO_sO6eJanWZOwmF_Go2zP0Dry8W-dZU83149Xi-L-4fbuan5f6FK2Y4EEPZiho66XrFFrQuK2497IgQRVBAzMDZdD35DAoWrKisrWYA1kqqTPstNp7jb41zeOo3rxb8GllQolyg5E1UBynU-uJa1ZWWf8GEinN_DGau_Y2KTP61rUNSCWCcAJ0MHHGNiobbAbCp9KgPqOXk3RqxS9-oleYYLKCYrJ7JYc_m75h_oCtm-InA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2525901470</pqid></control><display><type>article</type><title>Understanding the environmental roles of herbicides on cyanobacteria, cyanotoxins, and cyanoHABs</title><source>SpringerLink Journals - AutoHoldings</source><creator>Brêda-Alves, Fernanda ; de Oliveira Fernandes, Valéria ; Chia, Mathias Ahii</creator><creatorcontrib>Brêda-Alves, Fernanda ; de Oliveira Fernandes, Valéria ; Chia, Mathias Ahii</creatorcontrib><description>Agrochemicals such as herbicides change the physical and chemical conditions of aquatic ecosystems and alter the community structure and dynamics of phytoplankton. Cyanobacteria are photosynthetic organisms found at the base of aquatic food chains. When cyanobacteria form blooms and produce toxins, they harm humans and the environment. Herbicides contaminate the aquatic environment when they are leached and transported via surface runoff from farms and industries. In this review, we show that these compounds have different mechanisms of action, but at high concentrations, they cause oxidative stress, interfere with the normal functioning of enzymes, and change the metabolic profile of microalgae and cyanobacteria. This paper demonstrates that at environmentally relevant concentrations, some herbicides facilitate the formation of cyanobacterial harmful algal blooms (cyanoHABs). The formation of blooms is driven by the tolerance of cyanobacteria to herbicides, where some of these compounds are degraded and converted into non-toxic forms. The degradation by-products are also used as a source of nutrients to support cyanobacterial growth. This adaptation sometimes leads to higher concentrations of bioactive compounds such as cyanotoxins in the aquatic environment. The increased levels of cyanotoxins and herbicides in water bodies can trigger a cascading toxicological effect on non-targeted organisms and the aquatic food chain. Despite the evidence confirming herbicides influence the growth of cyanobacteria and alter the structure of the phytoplankton community toward the formation of cyanoHABs, there is a lot that remains to be done to fully understand their impact on these organisms.</description><identifier>ISSN: 1386-2588</identifier><identifier>EISSN: 1573-5125</identifier><identifier>DOI: 10.1007/s10452-021-09849-2</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Agrochemicals ; Algal blooms ; Aquatic ecosystems ; Aquatic environment ; Bioactive compounds ; Biocompatibility ; Biomedical and Life Sciences ; Cascading ; Community structure ; Cyanobacteria ; Ecosystems ; Eutrophication ; Farms ; Food chains ; Freshwater & Marine Ecology ; Herbicides ; Industry ; Leaching ; Life Sciences ; Marine toxins ; Nutrients ; Organisms ; Oxidative stress ; Photosynthesis ; Phytoplankton ; Plankton ; Runoff ; Surface runoff ; Toxicology ; Toxins ; Water quality</subject><ispartof>Aquatic ecology, 2021-06, Vol.55 (2), p.347-361</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2021</rights><rights>COPYRIGHT 2021 Springer</rights><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-2a0b0fd9a9b5ec2cca2ae89ebf5da1a4a0e0ee7e3db7a12d4734a38f260af47e3</citedby><cites>FETCH-LOGICAL-c358t-2a0b0fd9a9b5ec2cca2ae89ebf5da1a4a0e0ee7e3db7a12d4734a38f260af47e3</cites><orcidid>0000-0002-3549-5475</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10452-021-09849-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10452-021-09849-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Brêda-Alves, Fernanda</creatorcontrib><creatorcontrib>de Oliveira Fernandes, Valéria</creatorcontrib><creatorcontrib>Chia, Mathias Ahii</creatorcontrib><title>Understanding the environmental roles of herbicides on cyanobacteria, cyanotoxins, and cyanoHABs</title><title>Aquatic ecology</title><addtitle>Aquat Ecol</addtitle><description>Agrochemicals such as herbicides change the physical and chemical conditions of aquatic ecosystems and alter the community structure and dynamics of phytoplankton. Cyanobacteria are photosynthetic organisms found at the base of aquatic food chains. When cyanobacteria form blooms and produce toxins, they harm humans and the environment. Herbicides contaminate the aquatic environment when they are leached and transported via surface runoff from farms and industries. In this review, we show that these compounds have different mechanisms of action, but at high concentrations, they cause oxidative stress, interfere with the normal functioning of enzymes, and change the metabolic profile of microalgae and cyanobacteria. This paper demonstrates that at environmentally relevant concentrations, some herbicides facilitate the formation of cyanobacterial harmful algal blooms (cyanoHABs). The formation of blooms is driven by the tolerance of cyanobacteria to herbicides, where some of these compounds are degraded and converted into non-toxic forms. The degradation by-products are also used as a source of nutrients to support cyanobacterial growth. This adaptation sometimes leads to higher concentrations of bioactive compounds such as cyanotoxins in the aquatic environment. The increased levels of cyanotoxins and herbicides in water bodies can trigger a cascading toxicological effect on non-targeted organisms and the aquatic food chain. Despite the evidence confirming herbicides influence the growth of cyanobacteria and alter the structure of the phytoplankton community toward the formation of cyanoHABs, there is a lot that remains to be done to fully understand their impact on these organisms.</description><subject>Agrochemicals</subject><subject>Algal blooms</subject><subject>Aquatic ecosystems</subject><subject>Aquatic environment</subject><subject>Bioactive compounds</subject><subject>Biocompatibility</subject><subject>Biomedical and Life Sciences</subject><subject>Cascading</subject><subject>Community structure</subject><subject>Cyanobacteria</subject><subject>Ecosystems</subject><subject>Eutrophication</subject><subject>Farms</subject><subject>Food chains</subject><subject>Freshwater & Marine Ecology</subject><subject>Herbicides</subject><subject>Industry</subject><subject>Leaching</subject><subject>Life Sciences</subject><subject>Marine toxins</subject><subject>Nutrients</subject><subject>Organisms</subject><subject>Oxidative stress</subject><subject>Photosynthesis</subject><subject>Phytoplankton</subject><subject>Plankton</subject><subject>Runoff</subject><subject>Surface runoff</subject><subject>Toxicology</subject><subject>Toxins</subject><subject>Water quality</subject><issn>1386-2588</issn><issn>1573-5125</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kE9LxDAQxYsoqKtfwFPBq9XJtOmf4yrqCoIXPcdpOtmN7CZrUkW_vdEK3iSHyTzeb2Z4WXYi4FwANBdRQCWxABQFdG3VFbiTHQjZlIUUKHfTv2zrAmXb7meHMb4AQAcNHmTPT27gEEdyg3XLfFxxzu7dBu827EZa58GvOebe5CsOvdV2-O5crj_J-Z70yMHS2dSO_sO6eJanWZOwmF_Go2zP0Dry8W-dZU83149Xi-L-4fbuan5f6FK2Y4EEPZiho66XrFFrQuK2497IgQRVBAzMDZdD35DAoWrKisrWYA1kqqTPstNp7jb41zeOo3rxb8GllQolyg5E1UBynU-uJa1ZWWf8GEinN_DGau_Y2KTP61rUNSCWCcAJ0MHHGNiobbAbCp9KgPqOXk3RqxS9-oleYYLKCYrJ7JYc_m75h_oCtm-InA</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Brêda-Alves, Fernanda</creator><creator>de Oliveira Fernandes, Valéria</creator><creator>Chia, Mathias Ahii</creator><general>Springer Netherlands</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7QL</scope><scope>7SN</scope><scope>7T7</scope><scope>7TN</scope><scope>7U9</scope><scope>7UA</scope><scope>88A</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H94</scope><scope>H95</scope><scope>HCIFZ</scope><scope>L.G</scope><scope>LK8</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><orcidid>https://orcid.org/0000-0002-3549-5475</orcidid></search><sort><creationdate>20210601</creationdate><title>Understanding the environmental roles of herbicides on cyanobacteria, cyanotoxins, and cyanoHABs</title><author>Brêda-Alves, Fernanda ; de Oliveira Fernandes, Valéria ; Chia, Mathias Ahii</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-2a0b0fd9a9b5ec2cca2ae89ebf5da1a4a0e0ee7e3db7a12d4734a38f260af47e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Agrochemicals</topic><topic>Algal blooms</topic><topic>Aquatic ecosystems</topic><topic>Aquatic environment</topic><topic>Bioactive compounds</topic><topic>Biocompatibility</topic><topic>Biomedical and Life Sciences</topic><topic>Cascading</topic><topic>Community structure</topic><topic>Cyanobacteria</topic><topic>Ecosystems</topic><topic>Eutrophication</topic><topic>Farms</topic><topic>Food chains</topic><topic>Freshwater & Marine Ecology</topic><topic>Herbicides</topic><topic>Industry</topic><topic>Leaching</topic><topic>Life Sciences</topic><topic>Marine toxins</topic><topic>Nutrients</topic><topic>Organisms</topic><topic>Oxidative stress</topic><topic>Photosynthesis</topic><topic>Phytoplankton</topic><topic>Plankton</topic><topic>Runoff</topic><topic>Surface runoff</topic><topic>Toxicology</topic><topic>Toxins</topic><topic>Water quality</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brêda-Alves, Fernanda</creatorcontrib><creatorcontrib>de Oliveira Fernandes, Valéria</creatorcontrib><creatorcontrib>Chia, Mathias Ahii</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Oceanic Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Biology Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Biological Science Collection</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><jtitle>Aquatic ecology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brêda-Alves, Fernanda</au><au>de Oliveira Fernandes, Valéria</au><au>Chia, Mathias Ahii</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Understanding the environmental roles of herbicides on cyanobacteria, cyanotoxins, and cyanoHABs</atitle><jtitle>Aquatic ecology</jtitle><stitle>Aquat Ecol</stitle><date>2021-06-01</date><risdate>2021</risdate><volume>55</volume><issue>2</issue><spage>347</spage><epage>361</epage><pages>347-361</pages><issn>1386-2588</issn><eissn>1573-5125</eissn><abstract>Agrochemicals such as herbicides change the physical and chemical conditions of aquatic ecosystems and alter the community structure and dynamics of phytoplankton. Cyanobacteria are photosynthetic organisms found at the base of aquatic food chains. When cyanobacteria form blooms and produce toxins, they harm humans and the environment. Herbicides contaminate the aquatic environment when they are leached and transported via surface runoff from farms and industries. In this review, we show that these compounds have different mechanisms of action, but at high concentrations, they cause oxidative stress, interfere with the normal functioning of enzymes, and change the metabolic profile of microalgae and cyanobacteria. This paper demonstrates that at environmentally relevant concentrations, some herbicides facilitate the formation of cyanobacterial harmful algal blooms (cyanoHABs). The formation of blooms is driven by the tolerance of cyanobacteria to herbicides, where some of these compounds are degraded and converted into non-toxic forms. The degradation by-products are also used as a source of nutrients to support cyanobacterial growth. This adaptation sometimes leads to higher concentrations of bioactive compounds such as cyanotoxins in the aquatic environment. The increased levels of cyanotoxins and herbicides in water bodies can trigger a cascading toxicological effect on non-targeted organisms and the aquatic food chain. Despite the evidence confirming herbicides influence the growth of cyanobacteria and alter the structure of the phytoplankton community toward the formation of cyanoHABs, there is a lot that remains to be done to fully understand their impact on these organisms.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10452-021-09849-2</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-3549-5475</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1386-2588 |
ispartof | Aquatic ecology, 2021-06, Vol.55 (2), p.347-361 |
issn | 1386-2588 1573-5125 |
language | eng |
recordid | cdi_proquest_journals_2525901470 |
source | SpringerLink Journals - AutoHoldings |
subjects | Agrochemicals Algal blooms Aquatic ecosystems Aquatic environment Bioactive compounds Biocompatibility Biomedical and Life Sciences Cascading Community structure Cyanobacteria Ecosystems Eutrophication Farms Food chains Freshwater & Marine Ecology Herbicides Industry Leaching Life Sciences Marine toxins Nutrients Organisms Oxidative stress Photosynthesis Phytoplankton Plankton Runoff Surface runoff Toxicology Toxins Water quality |
title | Understanding the environmental roles of herbicides on cyanobacteria, cyanotoxins, and cyanoHABs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T00%3A26%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Understanding%20the%20environmental%20roles%20of%20herbicides%20on%20cyanobacteria,%20cyanotoxins,%20and%20cyanoHABs&rft.jtitle=Aquatic%20ecology&rft.au=Br%C3%AAda-Alves,%20Fernanda&rft.date=2021-06-01&rft.volume=55&rft.issue=2&rft.spage=347&rft.epage=361&rft.pages=347-361&rft.issn=1386-2588&rft.eissn=1573-5125&rft_id=info:doi/10.1007/s10452-021-09849-2&rft_dat=%3Cgale_proqu%3EA661660223%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2525901470&rft_id=info:pmid/&rft_galeid=A661660223&rfr_iscdi=true |