AUTOMAT[R]IX: learning simple matrix pipelines
Matrices are a very common way of representing and working with data in data science and artificial intelligence. Writing a small snippet of code to make a simple matrix transformation is frequently frustrating, especially for those people without an extensive programming expertise. We present AUTOM...
Gespeichert in:
Veröffentlicht in: | Machine learning 2021-04, Vol.110 (4), p.779-799 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 799 |
---|---|
container_issue | 4 |
container_start_page | 779 |
container_title | Machine learning |
container_volume | 110 |
creator | Contreras-Ochando, Lidia Ferri, Cèsar Hernández-Orallo, José |
description | Matrices are a very common way of representing and working with data in data science and artificial intelligence. Writing a small snippet of code to make a simple matrix transformation is frequently frustrating, especially for those people without an extensive programming expertise. We present AUTOMAT[R]IX, a system that is able to induce R program snippets from a single (and possibly partial) matrix transformation example provided by the user. Our learning algorithm is able to induce the correct matrix pipeline snippet by composing primitives from a library. Because of the intractable search space—exponential on the size of the library and the number of primitives to be combined in the snippet, we speed up the process with (1) a typed system that excludes all combinations of primitives with inconsistent mapping between input and output matrix dimensions, and (2) a probabilistic model to estimate the probability of each sequence of primitives from their frequency of use and a text hint provided by the user. We validate AUTOMAT[R]IX with a set of real programming queries involving matrices from Stack Overflow, showing that we can learn the transformations efficiently, from just one partial example. |
doi_str_mv | 10.1007/s10994-021-05950-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2525895148</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2525895148</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-27e2014f28f1a801f19e57326cb6f581b8b6385c9953b1bc03454461bb141873</originalsourceid><addsrcrecordid>eNp9kE1Lw0AQhhdRMFb_gKeA560z-5Vdb6VoLVQKEkEQWbJhU1KSNO62oP_e1AjePA0Dz_vO8BByjTBFgOw2IhgjKDCkII0Emp2QBGXGh1XJU5KA1pIqZPKcXMS4BQCmtErIdPaSr59m-dvz-_L1Lm18Ebq626SxbvvGp22xD_Vn2te9b-rOx0tyVhVN9Fe_c0Lyh_t8_khX68VyPlvRkqPYU5Z5BigqpissNGCFxg_PMFU6VUmNTjvFtSyNkdyhK4ELKYRC51CgzviE3Iy1fdh9HHzc2-3uELrhomWSSW0kCj1QbKTKsIsx-Mr2oW6L8GUR7FGLHbXYQYv90WKP1XwMxQHuNj78Vf-T-gbskmIZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2525895148</pqid></control><display><type>article</type><title>AUTOMAT[R]IX: learning simple matrix pipelines</title><source>Springer Nature - Complete Springer Journals</source><creator>Contreras-Ochando, Lidia ; Ferri, Cèsar ; Hernández-Orallo, José</creator><creatorcontrib>Contreras-Ochando, Lidia ; Ferri, Cèsar ; Hernández-Orallo, José</creatorcontrib><description>Matrices are a very common way of representing and working with data in data science and artificial intelligence. Writing a small snippet of code to make a simple matrix transformation is frequently frustrating, especially for those people without an extensive programming expertise. We present AUTOMAT[R]IX, a system that is able to induce R program snippets from a single (and possibly partial) matrix transformation example provided by the user. Our learning algorithm is able to induce the correct matrix pipeline snippet by composing primitives from a library. Because of the intractable search space—exponential on the size of the library and the number of primitives to be combined in the snippet, we speed up the process with (1) a typed system that excludes all combinations of primitives with inconsistent mapping between input and output matrix dimensions, and (2) a probabilistic model to estimate the probability of each sequence of primitives from their frequency of use and a text hint provided by the user. We validate AUTOMAT[R]IX with a set of real programming queries involving matrices from Stack Overflow, showing that we can learn the transformations efficiently, from just one partial example.</description><identifier>ISSN: 0885-6125</identifier><identifier>EISSN: 1573-0565</identifier><identifier>DOI: 10.1007/s10994-021-05950-7</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Artificial Intelligence ; Computer Science ; Control ; Data science ; Libraries ; Machine Learning ; Mechatronics ; Natural Language Processing (NLP) ; Probabilistic models ; Robotics ; Simulation and Modeling ; Special issue on Learning and Reasoning ; Statistical analysis ; Transformations (mathematics)</subject><ispartof>Machine learning, 2021-04, Vol.110 (4), p.779-799</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c314t-27e2014f28f1a801f19e57326cb6f581b8b6385c9953b1bc03454461bb141873</cites><orcidid>0000-0001-8213-1765</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10994-021-05950-7$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10994-021-05950-7$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids></links><search><creatorcontrib>Contreras-Ochando, Lidia</creatorcontrib><creatorcontrib>Ferri, Cèsar</creatorcontrib><creatorcontrib>Hernández-Orallo, José</creatorcontrib><title>AUTOMAT[R]IX: learning simple matrix pipelines</title><title>Machine learning</title><addtitle>Mach Learn</addtitle><description>Matrices are a very common way of representing and working with data in data science and artificial intelligence. Writing a small snippet of code to make a simple matrix transformation is frequently frustrating, especially for those people without an extensive programming expertise. We present AUTOMAT[R]IX, a system that is able to induce R program snippets from a single (and possibly partial) matrix transformation example provided by the user. Our learning algorithm is able to induce the correct matrix pipeline snippet by composing primitives from a library. Because of the intractable search space—exponential on the size of the library and the number of primitives to be combined in the snippet, we speed up the process with (1) a typed system that excludes all combinations of primitives with inconsistent mapping between input and output matrix dimensions, and (2) a probabilistic model to estimate the probability of each sequence of primitives from their frequency of use and a text hint provided by the user. We validate AUTOMAT[R]IX with a set of real programming queries involving matrices from Stack Overflow, showing that we can learn the transformations efficiently, from just one partial example.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Computer Science</subject><subject>Control</subject><subject>Data science</subject><subject>Libraries</subject><subject>Machine Learning</subject><subject>Mechatronics</subject><subject>Natural Language Processing (NLP)</subject><subject>Probabilistic models</subject><subject>Robotics</subject><subject>Simulation and Modeling</subject><subject>Special issue on Learning and Reasoning</subject><subject>Statistical analysis</subject><subject>Transformations (mathematics)</subject><issn>0885-6125</issn><issn>1573-0565</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kE1Lw0AQhhdRMFb_gKeA560z-5Vdb6VoLVQKEkEQWbJhU1KSNO62oP_e1AjePA0Dz_vO8BByjTBFgOw2IhgjKDCkII0Emp2QBGXGh1XJU5KA1pIqZPKcXMS4BQCmtErIdPaSr59m-dvz-_L1Lm18Ebq626SxbvvGp22xD_Vn2te9b-rOx0tyVhVN9Fe_c0Lyh_t8_khX68VyPlvRkqPYU5Z5BigqpissNGCFxg_PMFU6VUmNTjvFtSyNkdyhK4ELKYRC51CgzviE3Iy1fdh9HHzc2-3uELrhomWSSW0kCj1QbKTKsIsx-Mr2oW6L8GUR7FGLHbXYQYv90WKP1XwMxQHuNj78Vf-T-gbskmIZ</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Contreras-Ochando, Lidia</creator><creator>Ferri, Cèsar</creator><creator>Hernández-Orallo, José</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0001-8213-1765</orcidid></search><sort><creationdate>20210401</creationdate><title>AUTOMAT[R]IX: learning simple matrix pipelines</title><author>Contreras-Ochando, Lidia ; Ferri, Cèsar ; Hernández-Orallo, José</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-27e2014f28f1a801f19e57326cb6f581b8b6385c9953b1bc03454461bb141873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Computer Science</topic><topic>Control</topic><topic>Data science</topic><topic>Libraries</topic><topic>Machine Learning</topic><topic>Mechatronics</topic><topic>Natural Language Processing (NLP)</topic><topic>Probabilistic models</topic><topic>Robotics</topic><topic>Simulation and Modeling</topic><topic>Special issue on Learning and Reasoning</topic><topic>Statistical analysis</topic><topic>Transformations (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Contreras-Ochando, Lidia</creatorcontrib><creatorcontrib>Ferri, Cèsar</creatorcontrib><creatorcontrib>Hernández-Orallo, José</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Machine learning</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Contreras-Ochando, Lidia</au><au>Ferri, Cèsar</au><au>Hernández-Orallo, José</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>AUTOMAT[R]IX: learning simple matrix pipelines</atitle><jtitle>Machine learning</jtitle><stitle>Mach Learn</stitle><date>2021-04-01</date><risdate>2021</risdate><volume>110</volume><issue>4</issue><spage>779</spage><epage>799</epage><pages>779-799</pages><issn>0885-6125</issn><eissn>1573-0565</eissn><abstract>Matrices are a very common way of representing and working with data in data science and artificial intelligence. Writing a small snippet of code to make a simple matrix transformation is frequently frustrating, especially for those people without an extensive programming expertise. We present AUTOMAT[R]IX, a system that is able to induce R program snippets from a single (and possibly partial) matrix transformation example provided by the user. Our learning algorithm is able to induce the correct matrix pipeline snippet by composing primitives from a library. Because of the intractable search space—exponential on the size of the library and the number of primitives to be combined in the snippet, we speed up the process with (1) a typed system that excludes all combinations of primitives with inconsistent mapping between input and output matrix dimensions, and (2) a probabilistic model to estimate the probability of each sequence of primitives from their frequency of use and a text hint provided by the user. We validate AUTOMAT[R]IX with a set of real programming queries involving matrices from Stack Overflow, showing that we can learn the transformations efficiently, from just one partial example.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10994-021-05950-7</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0001-8213-1765</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0885-6125 |
ispartof | Machine learning, 2021-04, Vol.110 (4), p.779-799 |
issn | 0885-6125 1573-0565 |
language | eng |
recordid | cdi_proquest_journals_2525895148 |
source | Springer Nature - Complete Springer Journals |
subjects | Algorithms Artificial Intelligence Computer Science Control Data science Libraries Machine Learning Mechatronics Natural Language Processing (NLP) Probabilistic models Robotics Simulation and Modeling Special issue on Learning and Reasoning Statistical analysis Transformations (mathematics) |
title | AUTOMAT[R]IX: learning simple matrix pipelines |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T19%3A23%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=AUTOMAT%5BR%5DIX:%20learning%20simple%20matrix%20pipelines&rft.jtitle=Machine%20learning&rft.au=Contreras-Ochando,%20Lidia&rft.date=2021-04-01&rft.volume=110&rft.issue=4&rft.spage=779&rft.epage=799&rft.pages=779-799&rft.issn=0885-6125&rft.eissn=1573-0565&rft_id=info:doi/10.1007/s10994-021-05950-7&rft_dat=%3Cproquest_cross%3E2525895148%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2525895148&rft_id=info:pmid/&rfr_iscdi=true |