Effect of anion identity on ion association and dynamics of sodium ions in non-aqueous glyme based electrolytes—OTf vs TFSI

Sodium-based rechargeable battery technologies are being pursued as an alternative to lithium, in part due to the relative abundance of sodium compared to lithium. Despite their low dielectric constant, glyme-based electrolytes are particularly attractive for these sodium-based batteries due to thei...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2021-05, Vol.154 (18), p.184505-184505
Hauptverfasser: Li, Ke, Subasinghege Don, Visal, Gupta, Chris S., David, Rolf, Kumar, Revati
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 184505
container_issue 18
container_start_page 184505
container_title The Journal of chemical physics
container_volume 154
creator Li, Ke
Subasinghege Don, Visal
Gupta, Chris S.
David, Rolf
Kumar, Revati
description Sodium-based rechargeable battery technologies are being pursued as an alternative to lithium, in part due to the relative abundance of sodium compared to lithium. Despite their low dielectric constant, glyme-based electrolytes are particularly attractive for these sodium-based batteries due to their ability to chelate with the sodium ion and their high electrochemical stability. While the glyme chain length is a parameter that can be tuned to modify solvation properties, charge transport behavior, reactivity, and ultimately battery performance, anion identity provides another tunable variable. Trifluoromethanesulfonate (triflate/OTf) and bis(trifluoromethane)sulfonamide (TFSI) are chemically similar anions, which are often used in battery electrolytes for lithium-based batteries. In this paper, molecular simulations are used to examine the differences in ion association and charge transport between sodium salts of these two anions at different salt concentrations in glymes with the increasing chain length. The use of the modified force field developed for NaOTf in glymes for the NaTFSI electrolytes was validated by comparing the TFSI–sodium ion radial distribution functions to the results from ab initio molecular dynamics simulations on 1.5 M NaTFSI in diglyme. While the ion association behavior as a function of salt concentration showed similar trends for both NaOTf and NaTFSI in tetraglyme and triglyme electrolytes, the dominant solvation structures for the two sets of electrolytes are distinctly different in the monoglyme and diglyme cases. The conductivity is impacted by both the ion association behavior in these electrolytes and the non-vehicular or hopping transport of the anions in these systems.
doi_str_mv 10.1063/5.0046073
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2525858267</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2550267296</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-b22154b1bba352a471f84f989f47139c260f4b506c01825da60d72fb164477dc3</originalsourceid><addsrcrecordid>eNp90c1q3DAQB3BREuhm20PfQNBLE_B2JFuyfQxL0gYCOXRzNrI-ioItbT3egA-BPESeME8SeTe0kEIOQnP4afRnhpAvDFYMZP5drAAKCWX-gSwYVHVWyhqOyAKAs6yWID-SE8Q7AGAlLxbk4cI5q0caHVXBx0C9sWH040TnOh2FGLVX474OhpopqN5rnF9gNH7XzwypDzTEkKk_Oxt3SH93U29pq9Aaarv0wxC7abT4_Ph0s3H0Hunm8tfVJ3LsVIf28-u9JLeXF5v1z-z65sfV-vw607mEMWs5Z6JoWduqXHBVlMxVhaur2qUyrzWX4IpWgNTAKi6MkmBK7lomi6Isjc6X5Nuh73aIKSCOTe9R265TYU7bcCGAy5LXMtGvb-hd3A0hpUuKi0pUCSZ1elB6iIiDdc128L0apoZBMy-iEc3rIpI9O1jUftwP8i--j8M_2GyNew__3_kFf5CW9Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2525858267</pqid></control><display><type>article</type><title>Effect of anion identity on ion association and dynamics of sodium ions in non-aqueous glyme based electrolytes—OTf vs TFSI</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Li, Ke ; Subasinghege Don, Visal ; Gupta, Chris S. ; David, Rolf ; Kumar, Revati</creator><creatorcontrib>Li, Ke ; Subasinghege Don, Visal ; Gupta, Chris S. ; David, Rolf ; Kumar, Revati</creatorcontrib><description>Sodium-based rechargeable battery technologies are being pursued as an alternative to lithium, in part due to the relative abundance of sodium compared to lithium. Despite their low dielectric constant, glyme-based electrolytes are particularly attractive for these sodium-based batteries due to their ability to chelate with the sodium ion and their high electrochemical stability. While the glyme chain length is a parameter that can be tuned to modify solvation properties, charge transport behavior, reactivity, and ultimately battery performance, anion identity provides another tunable variable. Trifluoromethanesulfonate (triflate/OTf) and bis(trifluoromethane)sulfonamide (TFSI) are chemically similar anions, which are often used in battery electrolytes for lithium-based batteries. In this paper, molecular simulations are used to examine the differences in ion association and charge transport between sodium salts of these two anions at different salt concentrations in glymes with the increasing chain length. The use of the modified force field developed for NaOTf in glymes for the NaTFSI electrolytes was validated by comparing the TFSI–sodium ion radial distribution functions to the results from ab initio molecular dynamics simulations on 1.5 M NaTFSI in diglyme. While the ion association behavior as a function of salt concentration showed similar trends for both NaOTf and NaTFSI in tetraglyme and triglyme electrolytes, the dominant solvation structures for the two sets of electrolytes are distinctly different in the monoglyme and diglyme cases. The conductivity is impacted by both the ion association behavior in these electrolytes and the non-vehicular or hopping transport of the anions in these systems.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/5.0046073</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Anions ; Aqueous electrolytes ; Batteries ; Chains ; Charge transport ; Distribution functions ; Electrolytes ; Ion association ; Lithium ; Lithium batteries ; Molecular dynamics ; Nonaqueous electrolytes ; Parameter modification ; Radial distribution ; Rechargeable batteries ; Sodium salts ; Solvation ; Sulfonamides ; Transport phenomena ; Trifluoromethane</subject><ispartof>The Journal of chemical physics, 2021-05, Vol.154 (18), p.184505-184505</ispartof><rights>Author(s)</rights><rights>2021 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-b22154b1bba352a471f84f989f47139c260f4b506c01825da60d72fb164477dc3</citedby><cites>FETCH-LOGICAL-c360t-b22154b1bba352a471f84f989f47139c260f4b506c01825da60d72fb164477dc3</cites><orcidid>0000-0003-2484-3195 ; 0000-0002-3140-3983 ; 0000-0003-2520-3974 ; 0000-0001-5338-6267 ; 0000-0002-3272-8720</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/5.0046073$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,4497,27903,27904,76130</link.rule.ids></links><search><creatorcontrib>Li, Ke</creatorcontrib><creatorcontrib>Subasinghege Don, Visal</creatorcontrib><creatorcontrib>Gupta, Chris S.</creatorcontrib><creatorcontrib>David, Rolf</creatorcontrib><creatorcontrib>Kumar, Revati</creatorcontrib><title>Effect of anion identity on ion association and dynamics of sodium ions in non-aqueous glyme based electrolytes—OTf vs TFSI</title><title>The Journal of chemical physics</title><description>Sodium-based rechargeable battery technologies are being pursued as an alternative to lithium, in part due to the relative abundance of sodium compared to lithium. Despite their low dielectric constant, glyme-based electrolytes are particularly attractive for these sodium-based batteries due to their ability to chelate with the sodium ion and their high electrochemical stability. While the glyme chain length is a parameter that can be tuned to modify solvation properties, charge transport behavior, reactivity, and ultimately battery performance, anion identity provides another tunable variable. Trifluoromethanesulfonate (triflate/OTf) and bis(trifluoromethane)sulfonamide (TFSI) are chemically similar anions, which are often used in battery electrolytes for lithium-based batteries. In this paper, molecular simulations are used to examine the differences in ion association and charge transport between sodium salts of these two anions at different salt concentrations in glymes with the increasing chain length. The use of the modified force field developed for NaOTf in glymes for the NaTFSI electrolytes was validated by comparing the TFSI–sodium ion radial distribution functions to the results from ab initio molecular dynamics simulations on 1.5 M NaTFSI in diglyme. While the ion association behavior as a function of salt concentration showed similar trends for both NaOTf and NaTFSI in tetraglyme and triglyme electrolytes, the dominant solvation structures for the two sets of electrolytes are distinctly different in the monoglyme and diglyme cases. The conductivity is impacted by both the ion association behavior in these electrolytes and the non-vehicular or hopping transport of the anions in these systems.</description><subject>Anions</subject><subject>Aqueous electrolytes</subject><subject>Batteries</subject><subject>Chains</subject><subject>Charge transport</subject><subject>Distribution functions</subject><subject>Electrolytes</subject><subject>Ion association</subject><subject>Lithium</subject><subject>Lithium batteries</subject><subject>Molecular dynamics</subject><subject>Nonaqueous electrolytes</subject><subject>Parameter modification</subject><subject>Radial distribution</subject><subject>Rechargeable batteries</subject><subject>Sodium salts</subject><subject>Solvation</subject><subject>Sulfonamides</subject><subject>Transport phenomena</subject><subject>Trifluoromethane</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp90c1q3DAQB3BREuhm20PfQNBLE_B2JFuyfQxL0gYCOXRzNrI-ioItbT3egA-BPESeME8SeTe0kEIOQnP4afRnhpAvDFYMZP5drAAKCWX-gSwYVHVWyhqOyAKAs6yWID-SE8Q7AGAlLxbk4cI5q0caHVXBx0C9sWH040TnOh2FGLVX474OhpopqN5rnF9gNH7XzwypDzTEkKk_Oxt3SH93U29pq9Aaarv0wxC7abT4_Ph0s3H0Hunm8tfVJ3LsVIf28-u9JLeXF5v1z-z65sfV-vw607mEMWs5Z6JoWduqXHBVlMxVhaur2qUyrzWX4IpWgNTAKi6MkmBK7lomi6Isjc6X5Nuh73aIKSCOTe9R265TYU7bcCGAy5LXMtGvb-hd3A0hpUuKi0pUCSZ1elB6iIiDdc128L0apoZBMy-iEc3rIpI9O1jUftwP8i--j8M_2GyNew__3_kFf5CW9Q</recordid><startdate>20210514</startdate><enddate>20210514</enddate><creator>Li, Ke</creator><creator>Subasinghege Don, Visal</creator><creator>Gupta, Chris S.</creator><creator>David, Rolf</creator><creator>Kumar, Revati</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2484-3195</orcidid><orcidid>https://orcid.org/0000-0002-3140-3983</orcidid><orcidid>https://orcid.org/0000-0003-2520-3974</orcidid><orcidid>https://orcid.org/0000-0001-5338-6267</orcidid><orcidid>https://orcid.org/0000-0002-3272-8720</orcidid></search><sort><creationdate>20210514</creationdate><title>Effect of anion identity on ion association and dynamics of sodium ions in non-aqueous glyme based electrolytes—OTf vs TFSI</title><author>Li, Ke ; Subasinghege Don, Visal ; Gupta, Chris S. ; David, Rolf ; Kumar, Revati</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-b22154b1bba352a471f84f989f47139c260f4b506c01825da60d72fb164477dc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Anions</topic><topic>Aqueous electrolytes</topic><topic>Batteries</topic><topic>Chains</topic><topic>Charge transport</topic><topic>Distribution functions</topic><topic>Electrolytes</topic><topic>Ion association</topic><topic>Lithium</topic><topic>Lithium batteries</topic><topic>Molecular dynamics</topic><topic>Nonaqueous electrolytes</topic><topic>Parameter modification</topic><topic>Radial distribution</topic><topic>Rechargeable batteries</topic><topic>Sodium salts</topic><topic>Solvation</topic><topic>Sulfonamides</topic><topic>Transport phenomena</topic><topic>Trifluoromethane</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Ke</creatorcontrib><creatorcontrib>Subasinghege Don, Visal</creatorcontrib><creatorcontrib>Gupta, Chris S.</creatorcontrib><creatorcontrib>David, Rolf</creatorcontrib><creatorcontrib>Kumar, Revati</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Ke</au><au>Subasinghege Don, Visal</au><au>Gupta, Chris S.</au><au>David, Rolf</au><au>Kumar, Revati</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of anion identity on ion association and dynamics of sodium ions in non-aqueous glyme based electrolytes—OTf vs TFSI</atitle><jtitle>The Journal of chemical physics</jtitle><date>2021-05-14</date><risdate>2021</risdate><volume>154</volume><issue>18</issue><spage>184505</spage><epage>184505</epage><pages>184505-184505</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>Sodium-based rechargeable battery technologies are being pursued as an alternative to lithium, in part due to the relative abundance of sodium compared to lithium. Despite their low dielectric constant, glyme-based electrolytes are particularly attractive for these sodium-based batteries due to their ability to chelate with the sodium ion and their high electrochemical stability. While the glyme chain length is a parameter that can be tuned to modify solvation properties, charge transport behavior, reactivity, and ultimately battery performance, anion identity provides another tunable variable. Trifluoromethanesulfonate (triflate/OTf) and bis(trifluoromethane)sulfonamide (TFSI) are chemically similar anions, which are often used in battery electrolytes for lithium-based batteries. In this paper, molecular simulations are used to examine the differences in ion association and charge transport between sodium salts of these two anions at different salt concentrations in glymes with the increasing chain length. The use of the modified force field developed for NaOTf in glymes for the NaTFSI electrolytes was validated by comparing the TFSI–sodium ion radial distribution functions to the results from ab initio molecular dynamics simulations on 1.5 M NaTFSI in diglyme. While the ion association behavior as a function of salt concentration showed similar trends for both NaOTf and NaTFSI in tetraglyme and triglyme electrolytes, the dominant solvation structures for the two sets of electrolytes are distinctly different in the monoglyme and diglyme cases. The conductivity is impacted by both the ion association behavior in these electrolytes and the non-vehicular or hopping transport of the anions in these systems.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0046073</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-2484-3195</orcidid><orcidid>https://orcid.org/0000-0002-3140-3983</orcidid><orcidid>https://orcid.org/0000-0003-2520-3974</orcidid><orcidid>https://orcid.org/0000-0001-5338-6267</orcidid><orcidid>https://orcid.org/0000-0002-3272-8720</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 2021-05, Vol.154 (18), p.184505-184505
issn 0021-9606
1089-7690
language eng
recordid cdi_proquest_journals_2525858267
source AIP Journals Complete; Alma/SFX Local Collection
subjects Anions
Aqueous electrolytes
Batteries
Chains
Charge transport
Distribution functions
Electrolytes
Ion association
Lithium
Lithium batteries
Molecular dynamics
Nonaqueous electrolytes
Parameter modification
Radial distribution
Rechargeable batteries
Sodium salts
Solvation
Sulfonamides
Transport phenomena
Trifluoromethane
title Effect of anion identity on ion association and dynamics of sodium ions in non-aqueous glyme based electrolytes—OTf vs TFSI
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T21%3A45%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20anion%20identity%20on%20ion%20association%20and%20dynamics%20of%20sodium%20ions%20in%20non-aqueous%20glyme%20based%20electrolytes%E2%80%94OTf%20vs%20TFSI&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Li,%20Ke&rft.date=2021-05-14&rft.volume=154&rft.issue=18&rft.spage=184505&rft.epage=184505&rft.pages=184505-184505&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/5.0046073&rft_dat=%3Cproquest_cross%3E2550267296%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2525858267&rft_id=info:pmid/&rfr_iscdi=true