Towards a quantum computing algorithm for helicity amplitudes and parton showers

The interpretation of measurements of high-energy particle collisions relies heavily on the performance of full event generators, which include the calculation of the hard process and the subsequent parton shower step. With the continuous improvement of quantum devices, dedicated algorithms are need...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. D 2021-04, Vol.103 (7), p.1, Article 076020
Hauptverfasser: Bepari, Khadeejah, Malik, Sarah, Spannowsky, Michael, Williams, Simon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 7
container_start_page 1
container_title Physical review. D
container_volume 103
creator Bepari, Khadeejah
Malik, Sarah
Spannowsky, Michael
Williams, Simon
description The interpretation of measurements of high-energy particle collisions relies heavily on the performance of full event generators, which include the calculation of the hard process and the subsequent parton shower step. With the continuous improvement of quantum devices, dedicated algorithms are needed to exploit the potential quantum that computers can provide. We propose general and extendable algorithms for quantum gate computers to facilitate calculations of helicity amplitudes and the parton shower process. The helicity amplitude calculation exploits the equivalence between spinors and qubits and the unique features of a quantum computer to compute the helicities of each particle involved simultaneously, thus fully utilizing the quantum nature of the computation. This advantage over classical computers is further exploited by the simultaneous computation of s- and t-channel amplitudes for a 2 → 2 process. The parton shower algorithm simulates collinear emission for a two-step, discrete parton shower. In contrast to classical implementations, the quantum algorithm constructs a wave function with a superposition of all shower histories for the whole parton shower process, thus removing the need to explicitly keep track of individual shower histories. Both algorithms utilize the quantum computers ability to remain in a quantum state throughout the computation and represent a first step towards a quantum computing algorithm describing the full collision event at the LHC.
doi_str_mv 10.1103/PhysRevD.103.076020
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2525715716</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2525715716</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-48a04e6a1a0149afac1f52fa05a61715323cf8a7b4f6683ce3e40160071f87673</originalsourceid><addsrcrecordid>eNo9kM1qwzAQhEVpoSHNE_Qi6NnpyrIl51jSXwg0lPQstooUO9iWI8kNefs6uO1pZ2B2dvkIuWUwZwz4_bo8hQ_z_TgfzBykgBQuyCTNJCQA6eLyXzO4JrMQ9jBIAQvJ2ISsN-6Ifhso0kOPbewbql3T9bFqdxTrnfNVLBtqnaelqStdxRPFpqur2G_NsNVuaYc-upaG0h2NDzfkymIdzOx3Tsnn89Nm-Zqs3l_elg-rRGe8iElWIGRGIENg2QItambz1CLkKJhkOU-5tgXKr8wKUXBtuMnOX4NktpBC8im5G3s77w69CVHtXe_b4aRK8zQfKiQTQ4qPKe1dCN5Y1fmqQX9SDNSZnvqjp85mpMd_AE5bZGQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2525715716</pqid></control><display><type>article</type><title>Towards a quantum computing algorithm for helicity amplitudes and parton showers</title><source>American Physical Society Journals</source><creator>Bepari, Khadeejah ; Malik, Sarah ; Spannowsky, Michael ; Williams, Simon</creator><creatorcontrib>Bepari, Khadeejah ; Malik, Sarah ; Spannowsky, Michael ; Williams, Simon</creatorcontrib><description>The interpretation of measurements of high-energy particle collisions relies heavily on the performance of full event generators, which include the calculation of the hard process and the subsequent parton shower step. With the continuous improvement of quantum devices, dedicated algorithms are needed to exploit the potential quantum that computers can provide. We propose general and extendable algorithms for quantum gate computers to facilitate calculations of helicity amplitudes and the parton shower process. The helicity amplitude calculation exploits the equivalence between spinors and qubits and the unique features of a quantum computer to compute the helicities of each particle involved simultaneously, thus fully utilizing the quantum nature of the computation. This advantage over classical computers is further exploited by the simultaneous computation of s- and t-channel amplitudes for a 2 → 2 process. The parton shower algorithm simulates collinear emission for a two-step, discrete parton shower. In contrast to classical implementations, the quantum algorithm constructs a wave function with a superposition of all shower histories for the whole parton shower process, thus removing the need to explicitly keep track of individual shower histories. Both algorithms utilize the quantum computers ability to remain in a quantum state throughout the computation and represent a first step towards a quantum computing algorithm describing the full collision event at the LHC.</description><identifier>ISSN: 2470-0010</identifier><identifier>EISSN: 2470-0029</identifier><identifier>DOI: 10.1103/PhysRevD.103.076020</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Algorithms ; Amplitudes ; Computers ; Continuous improvement ; Helicity ; Helium ; Mathematical analysis ; Particle collisions ; Partons ; Quantum computers ; Quantum computing ; Qubits (quantum computing) ; Wave functions</subject><ispartof>Physical review. D, 2021-04, Vol.103 (7), p.1, Article 076020</ispartof><rights>Copyright American Physical Society Apr 1, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-48a04e6a1a0149afac1f52fa05a61715323cf8a7b4f6683ce3e40160071f87673</citedby><cites>FETCH-LOGICAL-c438t-48a04e6a1a0149afac1f52fa05a61715323cf8a7b4f6683ce3e40160071f87673</cites><orcidid>0000-0002-2663-578X ; 0000-0003-2505-5334 ; 0000-0001-8540-0780</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2876,2877,27924,27925</link.rule.ids></links><search><creatorcontrib>Bepari, Khadeejah</creatorcontrib><creatorcontrib>Malik, Sarah</creatorcontrib><creatorcontrib>Spannowsky, Michael</creatorcontrib><creatorcontrib>Williams, Simon</creatorcontrib><title>Towards a quantum computing algorithm for helicity amplitudes and parton showers</title><title>Physical review. D</title><description>The interpretation of measurements of high-energy particle collisions relies heavily on the performance of full event generators, which include the calculation of the hard process and the subsequent parton shower step. With the continuous improvement of quantum devices, dedicated algorithms are needed to exploit the potential quantum that computers can provide. We propose general and extendable algorithms for quantum gate computers to facilitate calculations of helicity amplitudes and the parton shower process. The helicity amplitude calculation exploits the equivalence between spinors and qubits and the unique features of a quantum computer to compute the helicities of each particle involved simultaneously, thus fully utilizing the quantum nature of the computation. This advantage over classical computers is further exploited by the simultaneous computation of s- and t-channel amplitudes for a 2 → 2 process. The parton shower algorithm simulates collinear emission for a two-step, discrete parton shower. In contrast to classical implementations, the quantum algorithm constructs a wave function with a superposition of all shower histories for the whole parton shower process, thus removing the need to explicitly keep track of individual shower histories. Both algorithms utilize the quantum computers ability to remain in a quantum state throughout the computation and represent a first step towards a quantum computing algorithm describing the full collision event at the LHC.</description><subject>Algorithms</subject><subject>Amplitudes</subject><subject>Computers</subject><subject>Continuous improvement</subject><subject>Helicity</subject><subject>Helium</subject><subject>Mathematical analysis</subject><subject>Particle collisions</subject><subject>Partons</subject><subject>Quantum computers</subject><subject>Quantum computing</subject><subject>Qubits (quantum computing)</subject><subject>Wave functions</subject><issn>2470-0010</issn><issn>2470-0029</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kM1qwzAQhEVpoSHNE_Qi6NnpyrIl51jSXwg0lPQstooUO9iWI8kNefs6uO1pZ2B2dvkIuWUwZwz4_bo8hQ_z_TgfzBykgBQuyCTNJCQA6eLyXzO4JrMQ9jBIAQvJ2ISsN-6Ifhso0kOPbewbql3T9bFqdxTrnfNVLBtqnaelqStdxRPFpqur2G_NsNVuaYc-upaG0h2NDzfkymIdzOx3Tsnn89Nm-Zqs3l_elg-rRGe8iElWIGRGIENg2QItambz1CLkKJhkOU-5tgXKr8wKUXBtuMnOX4NktpBC8im5G3s77w69CVHtXe_b4aRK8zQfKiQTQ4qPKe1dCN5Y1fmqQX9SDNSZnvqjp85mpMd_AE5bZGQ</recordid><startdate>20210426</startdate><enddate>20210426</enddate><creator>Bepari, Khadeejah</creator><creator>Malik, Sarah</creator><creator>Spannowsky, Michael</creator><creator>Williams, Simon</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-2663-578X</orcidid><orcidid>https://orcid.org/0000-0003-2505-5334</orcidid><orcidid>https://orcid.org/0000-0001-8540-0780</orcidid></search><sort><creationdate>20210426</creationdate><title>Towards a quantum computing algorithm for helicity amplitudes and parton showers</title><author>Bepari, Khadeejah ; Malik, Sarah ; Spannowsky, Michael ; Williams, Simon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-48a04e6a1a0149afac1f52fa05a61715323cf8a7b4f6683ce3e40160071f87673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Amplitudes</topic><topic>Computers</topic><topic>Continuous improvement</topic><topic>Helicity</topic><topic>Helium</topic><topic>Mathematical analysis</topic><topic>Particle collisions</topic><topic>Partons</topic><topic>Quantum computers</topic><topic>Quantum computing</topic><topic>Qubits (quantum computing)</topic><topic>Wave functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bepari, Khadeejah</creatorcontrib><creatorcontrib>Malik, Sarah</creatorcontrib><creatorcontrib>Spannowsky, Michael</creatorcontrib><creatorcontrib>Williams, Simon</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. D</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bepari, Khadeejah</au><au>Malik, Sarah</au><au>Spannowsky, Michael</au><au>Williams, Simon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Towards a quantum computing algorithm for helicity amplitudes and parton showers</atitle><jtitle>Physical review. D</jtitle><date>2021-04-26</date><risdate>2021</risdate><volume>103</volume><issue>7</issue><spage>1</spage><pages>1-</pages><artnum>076020</artnum><issn>2470-0010</issn><eissn>2470-0029</eissn><abstract>The interpretation of measurements of high-energy particle collisions relies heavily on the performance of full event generators, which include the calculation of the hard process and the subsequent parton shower step. With the continuous improvement of quantum devices, dedicated algorithms are needed to exploit the potential quantum that computers can provide. We propose general and extendable algorithms for quantum gate computers to facilitate calculations of helicity amplitudes and the parton shower process. The helicity amplitude calculation exploits the equivalence between spinors and qubits and the unique features of a quantum computer to compute the helicities of each particle involved simultaneously, thus fully utilizing the quantum nature of the computation. This advantage over classical computers is further exploited by the simultaneous computation of s- and t-channel amplitudes for a 2 → 2 process. The parton shower algorithm simulates collinear emission for a two-step, discrete parton shower. In contrast to classical implementations, the quantum algorithm constructs a wave function with a superposition of all shower histories for the whole parton shower process, thus removing the need to explicitly keep track of individual shower histories. Both algorithms utilize the quantum computers ability to remain in a quantum state throughout the computation and represent a first step towards a quantum computing algorithm describing the full collision event at the LHC.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevD.103.076020</doi><orcidid>https://orcid.org/0000-0002-2663-578X</orcidid><orcidid>https://orcid.org/0000-0003-2505-5334</orcidid><orcidid>https://orcid.org/0000-0001-8540-0780</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2470-0010
ispartof Physical review. D, 2021-04, Vol.103 (7), p.1, Article 076020
issn 2470-0010
2470-0029
language eng
recordid cdi_proquest_journals_2525715716
source American Physical Society Journals
subjects Algorithms
Amplitudes
Computers
Continuous improvement
Helicity
Helium
Mathematical analysis
Particle collisions
Partons
Quantum computers
Quantum computing
Qubits (quantum computing)
Wave functions
title Towards a quantum computing algorithm for helicity amplitudes and parton showers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T03%3A16%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Towards%20a%20quantum%20computing%20algorithm%20for%20helicity%20amplitudes%20and%20parton%20showers&rft.jtitle=Physical%20review.%20D&rft.au=Bepari,%20Khadeejah&rft.date=2021-04-26&rft.volume=103&rft.issue=7&rft.spage=1&rft.pages=1-&rft.artnum=076020&rft.issn=2470-0010&rft.eissn=2470-0029&rft_id=info:doi/10.1103/PhysRevD.103.076020&rft_dat=%3Cproquest_cross%3E2525715716%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2525715716&rft_id=info:pmid/&rfr_iscdi=true