Towards a quantum computing algorithm for helicity amplitudes and parton showers
The interpretation of measurements of high-energy particle collisions relies heavily on the performance of full event generators, which include the calculation of the hard process and the subsequent parton shower step. With the continuous improvement of quantum devices, dedicated algorithms are need...
Gespeichert in:
Veröffentlicht in: | Physical review. D 2021-04, Vol.103 (7), p.1, Article 076020 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 7 |
container_start_page | 1 |
container_title | Physical review. D |
container_volume | 103 |
creator | Bepari, Khadeejah Malik, Sarah Spannowsky, Michael Williams, Simon |
description | The interpretation of measurements of high-energy particle collisions relies heavily on the performance of full event generators, which include the calculation of the hard process and the subsequent parton shower step. With the continuous improvement of quantum devices, dedicated algorithms are needed to exploit the potential quantum that computers can provide. We propose general and extendable algorithms for quantum gate computers to facilitate calculations of helicity amplitudes and the parton shower process. The helicity amplitude calculation exploits the equivalence between spinors and qubits and the unique features of a quantum computer to compute the helicities of each particle involved simultaneously, thus fully utilizing the quantum nature of the computation. This advantage over classical computers is further exploited by the simultaneous computation of s- and t-channel amplitudes for a 2 → 2 process. The parton shower algorithm simulates collinear emission for a two-step, discrete parton shower. In contrast to classical implementations, the quantum algorithm constructs a wave function with a superposition of all shower histories for the whole parton shower process, thus removing the need to explicitly keep track of individual shower histories. Both algorithms utilize the quantum computers ability to remain in a quantum state throughout the computation and represent a first step towards a quantum computing algorithm describing the full collision event at the LHC. |
doi_str_mv | 10.1103/PhysRevD.103.076020 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2525715716</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2525715716</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-48a04e6a1a0149afac1f52fa05a61715323cf8a7b4f6683ce3e40160071f87673</originalsourceid><addsrcrecordid>eNo9kM1qwzAQhEVpoSHNE_Qi6NnpyrIl51jSXwg0lPQstooUO9iWI8kNefs6uO1pZ2B2dvkIuWUwZwz4_bo8hQ_z_TgfzBykgBQuyCTNJCQA6eLyXzO4JrMQ9jBIAQvJ2ISsN-6Ifhso0kOPbewbql3T9bFqdxTrnfNVLBtqnaelqStdxRPFpqur2G_NsNVuaYc-upaG0h2NDzfkymIdzOx3Tsnn89Nm-Zqs3l_elg-rRGe8iElWIGRGIENg2QItambz1CLkKJhkOU-5tgXKr8wKUXBtuMnOX4NktpBC8im5G3s77w69CVHtXe_b4aRK8zQfKiQTQ4qPKe1dCN5Y1fmqQX9SDNSZnvqjp85mpMd_AE5bZGQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2525715716</pqid></control><display><type>article</type><title>Towards a quantum computing algorithm for helicity amplitudes and parton showers</title><source>American Physical Society Journals</source><creator>Bepari, Khadeejah ; Malik, Sarah ; Spannowsky, Michael ; Williams, Simon</creator><creatorcontrib>Bepari, Khadeejah ; Malik, Sarah ; Spannowsky, Michael ; Williams, Simon</creatorcontrib><description>The interpretation of measurements of high-energy particle collisions relies heavily on the performance of full event generators, which include the calculation of the hard process and the subsequent parton shower step. With the continuous improvement of quantum devices, dedicated algorithms are needed to exploit the potential quantum that computers can provide. We propose general and extendable algorithms for quantum gate computers to facilitate calculations of helicity amplitudes and the parton shower process. The helicity amplitude calculation exploits the equivalence between spinors and qubits and the unique features of a quantum computer to compute the helicities of each particle involved simultaneously, thus fully utilizing the quantum nature of the computation. This advantage over classical computers is further exploited by the simultaneous computation of s- and t-channel amplitudes for a 2 → 2 process. The parton shower algorithm simulates collinear emission for a two-step, discrete parton shower. In contrast to classical implementations, the quantum algorithm constructs a wave function with a superposition of all shower histories for the whole parton shower process, thus removing the need to explicitly keep track of individual shower histories. Both algorithms utilize the quantum computers ability to remain in a quantum state throughout the computation and represent a first step towards a quantum computing algorithm describing the full collision event at the LHC.</description><identifier>ISSN: 2470-0010</identifier><identifier>EISSN: 2470-0029</identifier><identifier>DOI: 10.1103/PhysRevD.103.076020</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Algorithms ; Amplitudes ; Computers ; Continuous improvement ; Helicity ; Helium ; Mathematical analysis ; Particle collisions ; Partons ; Quantum computers ; Quantum computing ; Qubits (quantum computing) ; Wave functions</subject><ispartof>Physical review. D, 2021-04, Vol.103 (7), p.1, Article 076020</ispartof><rights>Copyright American Physical Society Apr 1, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-48a04e6a1a0149afac1f52fa05a61715323cf8a7b4f6683ce3e40160071f87673</citedby><cites>FETCH-LOGICAL-c438t-48a04e6a1a0149afac1f52fa05a61715323cf8a7b4f6683ce3e40160071f87673</cites><orcidid>0000-0002-2663-578X ; 0000-0003-2505-5334 ; 0000-0001-8540-0780</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2876,2877,27924,27925</link.rule.ids></links><search><creatorcontrib>Bepari, Khadeejah</creatorcontrib><creatorcontrib>Malik, Sarah</creatorcontrib><creatorcontrib>Spannowsky, Michael</creatorcontrib><creatorcontrib>Williams, Simon</creatorcontrib><title>Towards a quantum computing algorithm for helicity amplitudes and parton showers</title><title>Physical review. D</title><description>The interpretation of measurements of high-energy particle collisions relies heavily on the performance of full event generators, which include the calculation of the hard process and the subsequent parton shower step. With the continuous improvement of quantum devices, dedicated algorithms are needed to exploit the potential quantum that computers can provide. We propose general and extendable algorithms for quantum gate computers to facilitate calculations of helicity amplitudes and the parton shower process. The helicity amplitude calculation exploits the equivalence between spinors and qubits and the unique features of a quantum computer to compute the helicities of each particle involved simultaneously, thus fully utilizing the quantum nature of the computation. This advantage over classical computers is further exploited by the simultaneous computation of s- and t-channel amplitudes for a 2 → 2 process. The parton shower algorithm simulates collinear emission for a two-step, discrete parton shower. In contrast to classical implementations, the quantum algorithm constructs a wave function with a superposition of all shower histories for the whole parton shower process, thus removing the need to explicitly keep track of individual shower histories. Both algorithms utilize the quantum computers ability to remain in a quantum state throughout the computation and represent a first step towards a quantum computing algorithm describing the full collision event at the LHC.</description><subject>Algorithms</subject><subject>Amplitudes</subject><subject>Computers</subject><subject>Continuous improvement</subject><subject>Helicity</subject><subject>Helium</subject><subject>Mathematical analysis</subject><subject>Particle collisions</subject><subject>Partons</subject><subject>Quantum computers</subject><subject>Quantum computing</subject><subject>Qubits (quantum computing)</subject><subject>Wave functions</subject><issn>2470-0010</issn><issn>2470-0029</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kM1qwzAQhEVpoSHNE_Qi6NnpyrIl51jSXwg0lPQstooUO9iWI8kNefs6uO1pZ2B2dvkIuWUwZwz4_bo8hQ_z_TgfzBykgBQuyCTNJCQA6eLyXzO4JrMQ9jBIAQvJ2ISsN-6Ifhso0kOPbewbql3T9bFqdxTrnfNVLBtqnaelqStdxRPFpqur2G_NsNVuaYc-upaG0h2NDzfkymIdzOx3Tsnn89Nm-Zqs3l_elg-rRGe8iElWIGRGIENg2QItambz1CLkKJhkOU-5tgXKr8wKUXBtuMnOX4NktpBC8im5G3s77w69CVHtXe_b4aRK8zQfKiQTQ4qPKe1dCN5Y1fmqQX9SDNSZnvqjp85mpMd_AE5bZGQ</recordid><startdate>20210426</startdate><enddate>20210426</enddate><creator>Bepari, Khadeejah</creator><creator>Malik, Sarah</creator><creator>Spannowsky, Michael</creator><creator>Williams, Simon</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-2663-578X</orcidid><orcidid>https://orcid.org/0000-0003-2505-5334</orcidid><orcidid>https://orcid.org/0000-0001-8540-0780</orcidid></search><sort><creationdate>20210426</creationdate><title>Towards a quantum computing algorithm for helicity amplitudes and parton showers</title><author>Bepari, Khadeejah ; Malik, Sarah ; Spannowsky, Michael ; Williams, Simon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-48a04e6a1a0149afac1f52fa05a61715323cf8a7b4f6683ce3e40160071f87673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Amplitudes</topic><topic>Computers</topic><topic>Continuous improvement</topic><topic>Helicity</topic><topic>Helium</topic><topic>Mathematical analysis</topic><topic>Particle collisions</topic><topic>Partons</topic><topic>Quantum computers</topic><topic>Quantum computing</topic><topic>Qubits (quantum computing)</topic><topic>Wave functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bepari, Khadeejah</creatorcontrib><creatorcontrib>Malik, Sarah</creatorcontrib><creatorcontrib>Spannowsky, Michael</creatorcontrib><creatorcontrib>Williams, Simon</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. D</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bepari, Khadeejah</au><au>Malik, Sarah</au><au>Spannowsky, Michael</au><au>Williams, Simon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Towards a quantum computing algorithm for helicity amplitudes and parton showers</atitle><jtitle>Physical review. D</jtitle><date>2021-04-26</date><risdate>2021</risdate><volume>103</volume><issue>7</issue><spage>1</spage><pages>1-</pages><artnum>076020</artnum><issn>2470-0010</issn><eissn>2470-0029</eissn><abstract>The interpretation of measurements of high-energy particle collisions relies heavily on the performance of full event generators, which include the calculation of the hard process and the subsequent parton shower step. With the continuous improvement of quantum devices, dedicated algorithms are needed to exploit the potential quantum that computers can provide. We propose general and extendable algorithms for quantum gate computers to facilitate calculations of helicity amplitudes and the parton shower process. The helicity amplitude calculation exploits the equivalence between spinors and qubits and the unique features of a quantum computer to compute the helicities of each particle involved simultaneously, thus fully utilizing the quantum nature of the computation. This advantage over classical computers is further exploited by the simultaneous computation of s- and t-channel amplitudes for a 2 → 2 process. The parton shower algorithm simulates collinear emission for a two-step, discrete parton shower. In contrast to classical implementations, the quantum algorithm constructs a wave function with a superposition of all shower histories for the whole parton shower process, thus removing the need to explicitly keep track of individual shower histories. Both algorithms utilize the quantum computers ability to remain in a quantum state throughout the computation and represent a first step towards a quantum computing algorithm describing the full collision event at the LHC.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevD.103.076020</doi><orcidid>https://orcid.org/0000-0002-2663-578X</orcidid><orcidid>https://orcid.org/0000-0003-2505-5334</orcidid><orcidid>https://orcid.org/0000-0001-8540-0780</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2470-0010 |
ispartof | Physical review. D, 2021-04, Vol.103 (7), p.1, Article 076020 |
issn | 2470-0010 2470-0029 |
language | eng |
recordid | cdi_proquest_journals_2525715716 |
source | American Physical Society Journals |
subjects | Algorithms Amplitudes Computers Continuous improvement Helicity Helium Mathematical analysis Particle collisions Partons Quantum computers Quantum computing Qubits (quantum computing) Wave functions |
title | Towards a quantum computing algorithm for helicity amplitudes and parton showers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T03%3A16%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Towards%20a%20quantum%20computing%20algorithm%20for%20helicity%20amplitudes%20and%20parton%20showers&rft.jtitle=Physical%20review.%20D&rft.au=Bepari,%20Khadeejah&rft.date=2021-04-26&rft.volume=103&rft.issue=7&rft.spage=1&rft.pages=1-&rft.artnum=076020&rft.issn=2470-0010&rft.eissn=2470-0029&rft_id=info:doi/10.1103/PhysRevD.103.076020&rft_dat=%3Cproquest_cross%3E2525715716%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2525715716&rft_id=info:pmid/&rfr_iscdi=true |