Affine quantization of ( φ 4 ) 4 succeeds while canonical quantization fails
Covariant scalar field quantization, nicknamed ( φr ) n, where r denotes the power of the interaction term and n = s + 1 where s is the spatial dimension and 1 adds time. Models such that r < 2 n / ( n − 2 ) can be treated by canonical quantization, while models such that r > 2 n / ( n − 2 ) a...
Gespeichert in:
Veröffentlicht in: | Physical review. D 2021-04, Vol.103 (7), p.1, Article 076013 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 7 |
container_start_page | 1 |
container_title | Physical review. D |
container_volume | 103 |
creator | Fantoni, Riccardo Klauder, John R. |
description | Covariant scalar field quantization, nicknamed ( φr ) n, where r denotes the power of the interaction term and n = s + 1 where s is the spatial dimension and 1 adds time. Models such that r < 2 n / ( n − 2 ) can be treated by canonical quantization, while models such that r > 2 n / ( n − 2 ) are nonrenormalizable, leading to perturbative infinities, or, if treated as a unit, emerge as 'free theories'. Models such as r = 2 n / ( n − 2 ) , e.g., r = n = 4 , again using canonical quantization also become 'free theories', which must be considered quantum failures. However, there exists a different approach called affine quantization that promotes a different set of classical variables to become the basic quantum operators and it offers different results, such as models for which r > 2 n / ( n − 2 ) , which has recently correctly quantized ( φ 12 ) 3. In the present paper we show, with the aid of a Monte Carlo analysis, that one of the special cases where r = 2 n / ( n − 2 ) , specifically the case r = n = 4 , can be acceptably quantized using affine quantization. |
doi_str_mv | 10.1103/PhysRevD.103.076013 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2525714093</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2525714093</sourcerecordid><originalsourceid>FETCH-LOGICAL-c242t-d391db4f09218130d5ab299938f4f39bc79f80ce81260294c935c72cf986a5093</originalsourceid><addsrcrecordid>eNpVkM9KAzEQxoMoWGqfwEvAix62ziTZPzmWalWoKKLnkGYTmrLutptdpT6Ar-crmVIVPAzzffCbGeYj5BRhjAj88nG5DU_27WoczRjyDJAfkAETOSQATB7-aYRjMgphBVFmIHPEAbmfOOdrSze9rjv_oTvf1LRx9Jx-fVJBL2KF3hhry0Dfl76y1Oi6qb3R1f8Zp30VTsiR01Wwo58-JC-z6-fpbTJ_uLmbTuaJYYJ1SckllgvhQDIskEOZ6gWTUvLCCcflwuTSFWBsgSyLHwgjeWpyZpwsMp2C5ENytt-7bptNb0OnVk3f1vGkYilLcxQRihTfU6ZtQmitU-vWv-p2qxDULjr1G53amX10_Bs6K2Fu</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2525714093</pqid></control><display><type>article</type><title>Affine quantization of ( φ 4 ) 4 succeeds while canonical quantization fails</title><source>American Physical Society Journals</source><creator>Fantoni, Riccardo ; Klauder, John R.</creator><creatorcontrib>Fantoni, Riccardo ; Klauder, John R.</creatorcontrib><description>Covariant scalar field quantization, nicknamed ( φr ) n, where r denotes the power of the interaction term and n = s + 1 where s is the spatial dimension and 1 adds time. Models such that r < 2 n / ( n − 2 ) can be treated by canonical quantization, while models such that r > 2 n / ( n − 2 ) are nonrenormalizable, leading to perturbative infinities, or, if treated as a unit, emerge as 'free theories'. Models such as r = 2 n / ( n − 2 ) , e.g., r = n = 4 , again using canonical quantization also become 'free theories', which must be considered quantum failures. However, there exists a different approach called affine quantization that promotes a different set of classical variables to become the basic quantum operators and it offers different results, such as models for which r > 2 n / ( n − 2 ) , which has recently correctly quantized ( φ 12 ) 3. In the present paper we show, with the aid of a Monte Carlo analysis, that one of the special cases where r = 2 n / ( n − 2 ) , specifically the case r = n = 4 , can be acceptably quantized using affine quantization.</description><identifier>ISSN: 2470-0010</identifier><identifier>EISSN: 2470-0029</identifier><identifier>DOI: 10.1103/PhysRevD.103.076013</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Measurement ; Scalars</subject><ispartof>Physical review. D, 2021-04, Vol.103 (7), p.1, Article 076013</ispartof><rights>Copyright American Physical Society Apr 1, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c242t-d391db4f09218130d5ab299938f4f39bc79f80ce81260294c935c72cf986a5093</citedby><cites>FETCH-LOGICAL-c242t-d391db4f09218130d5ab299938f4f39bc79f80ce81260294c935c72cf986a5093</cites><orcidid>0000-0002-1836-4537 ; 0000-0002-5950-8648</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2863,2864,27901,27902</link.rule.ids></links><search><creatorcontrib>Fantoni, Riccardo</creatorcontrib><creatorcontrib>Klauder, John R.</creatorcontrib><title>Affine quantization of ( φ 4 ) 4 succeeds while canonical quantization fails</title><title>Physical review. D</title><description>Covariant scalar field quantization, nicknamed ( φr ) n, where r denotes the power of the interaction term and n = s + 1 where s is the spatial dimension and 1 adds time. Models such that r < 2 n / ( n − 2 ) can be treated by canonical quantization, while models such that r > 2 n / ( n − 2 ) are nonrenormalizable, leading to perturbative infinities, or, if treated as a unit, emerge as 'free theories'. Models such as r = 2 n / ( n − 2 ) , e.g., r = n = 4 , again using canonical quantization also become 'free theories', which must be considered quantum failures. However, there exists a different approach called affine quantization that promotes a different set of classical variables to become the basic quantum operators and it offers different results, such as models for which r > 2 n / ( n − 2 ) , which has recently correctly quantized ( φ 12 ) 3. In the present paper we show, with the aid of a Monte Carlo analysis, that one of the special cases where r = 2 n / ( n − 2 ) , specifically the case r = n = 4 , can be acceptably quantized using affine quantization.</description><subject>Measurement</subject><subject>Scalars</subject><issn>2470-0010</issn><issn>2470-0029</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpVkM9KAzEQxoMoWGqfwEvAix62ziTZPzmWalWoKKLnkGYTmrLutptdpT6Ar-crmVIVPAzzffCbGeYj5BRhjAj88nG5DU_27WoczRjyDJAfkAETOSQATB7-aYRjMgphBVFmIHPEAbmfOOdrSze9rjv_oTvf1LRx9Jx-fVJBL2KF3hhry0Dfl76y1Oi6qb3R1f8Zp30VTsiR01Wwo58-JC-z6-fpbTJ_uLmbTuaJYYJ1SckllgvhQDIskEOZ6gWTUvLCCcflwuTSFWBsgSyLHwgjeWpyZpwsMp2C5ENytt-7bptNb0OnVk3f1vGkYilLcxQRihTfU6ZtQmitU-vWv-p2qxDULjr1G53amX10_Bs6K2Fu</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Fantoni, Riccardo</creator><creator>Klauder, John R.</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-1836-4537</orcidid><orcidid>https://orcid.org/0000-0002-5950-8648</orcidid></search><sort><creationdate>20210401</creationdate><title>Affine quantization of ( φ 4 ) 4 succeeds while canonical quantization fails</title><author>Fantoni, Riccardo ; Klauder, John R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c242t-d391db4f09218130d5ab299938f4f39bc79f80ce81260294c935c72cf986a5093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Measurement</topic><topic>Scalars</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fantoni, Riccardo</creatorcontrib><creatorcontrib>Klauder, John R.</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. D</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fantoni, Riccardo</au><au>Klauder, John R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Affine quantization of ( φ 4 ) 4 succeeds while canonical quantization fails</atitle><jtitle>Physical review. D</jtitle><date>2021-04-01</date><risdate>2021</risdate><volume>103</volume><issue>7</issue><spage>1</spage><pages>1-</pages><artnum>076013</artnum><issn>2470-0010</issn><eissn>2470-0029</eissn><abstract>Covariant scalar field quantization, nicknamed ( φr ) n, where r denotes the power of the interaction term and n = s + 1 where s is the spatial dimension and 1 adds time. Models such that r < 2 n / ( n − 2 ) can be treated by canonical quantization, while models such that r > 2 n / ( n − 2 ) are nonrenormalizable, leading to perturbative infinities, or, if treated as a unit, emerge as 'free theories'. Models such as r = 2 n / ( n − 2 ) , e.g., r = n = 4 , again using canonical quantization also become 'free theories', which must be considered quantum failures. However, there exists a different approach called affine quantization that promotes a different set of classical variables to become the basic quantum operators and it offers different results, such as models for which r > 2 n / ( n − 2 ) , which has recently correctly quantized ( φ 12 ) 3. In the present paper we show, with the aid of a Monte Carlo analysis, that one of the special cases where r = 2 n / ( n − 2 ) , specifically the case r = n = 4 , can be acceptably quantized using affine quantization.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevD.103.076013</doi><orcidid>https://orcid.org/0000-0002-1836-4537</orcidid><orcidid>https://orcid.org/0000-0002-5950-8648</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2470-0010 |
ispartof | Physical review. D, 2021-04, Vol.103 (7), p.1, Article 076013 |
issn | 2470-0010 2470-0029 |
language | eng |
recordid | cdi_proquest_journals_2525714093 |
source | American Physical Society Journals |
subjects | Measurement Scalars |
title | Affine quantization of ( φ 4 ) 4 succeeds while canonical quantization fails |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T12%3A40%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Affine%20quantization%20of%20(%20%CF%86%204%20)%204%20succeeds%20while%20canonical%20quantization%20fails&rft.jtitle=Physical%20review.%20D&rft.au=Fantoni,%20Riccardo&rft.date=2021-04-01&rft.volume=103&rft.issue=7&rft.spage=1&rft.pages=1-&rft.artnum=076013&rft.issn=2470-0010&rft.eissn=2470-0029&rft_id=info:doi/10.1103/PhysRevD.103.076013&rft_dat=%3Cproquest_cross%3E2525714093%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2525714093&rft_id=info:pmid/&rfr_iscdi=true |