Some remarks on Hermitian manifolds satisfying Kähler-like conditions
We study Hermitian metrics whose Bismut connection ∇ B satisfies the first Bianchi identity in relation to the SKT condition and the parallelism of the torsion of the Bimut connection. We obtain a characterization of complex surfaces admitting Hermitian metrics whose Bismut connection satisfy the fi...
Gespeichert in:
Veröffentlicht in: | Mathematische Zeitschrift 2021-06, Vol.298 (1-2), p.49-68 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 68 |
---|---|
container_issue | 1-2 |
container_start_page | 49 |
container_title | Mathematische Zeitschrift |
container_volume | 298 |
creator | Fino, Anna Tardini, Nicoletta |
description | We study Hermitian metrics whose Bismut connection
∇
B
satisfies the first Bianchi identity in relation to the SKT condition and the parallelism of the torsion of the Bimut connection. We obtain a characterization of complex surfaces admitting Hermitian metrics whose Bismut connection satisfy the first Bianchi identity and the condition
R
B
(
x
,
y
,
z
,
w
)
=
R
B
(
J
x
,
J
y
,
z
,
w
)
, for every tangent vectors
x
,
y
,
z
,
w
, in terms of Vaisman metrics. These conditions, also called Bismut Kähler-like, have been recently studied in Angella et al. (Commun Anal Geom, to appear, 2018), Yau et al. (2019) and Zhao and Zheng (2019). Using the characterization of SKT almost abelian Lie groups in Arroyo and Lafuente (Proc Lond Math Soc (3) 119:266–289, 2019), we construct new examples of Hermitian manifolds satisfying the Bismut Kähler-like condition. Moreover, we prove some results in relation to the pluriclosed flow on complex surfaces and on almost abelian Lie groups. In particular, we show that, if the initial metric has constant scalar curvature, then the pluriclosed flow preserves the Vaisman condition on complex surfaces. |
doi_str_mv | 10.1007/s00209-020-02598-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2525685925</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2525685925</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-4c0a60687385cf0c733a7dc5eaf94534d3051960d3bc670653260a31b59b13953</originalsourceid><addsrcrecordid>eNp9UL1OwzAQthBIlMILMFliNpztOIlHVFGKqMQAzJbrOMVtYhc7Hfo-vAkvhiFIbAz33fD9nO5D6JLCNQWobhIAA0ky5BGyJuwITWjBGaE148doknlBRF0Vp-gspQ1AJqtigubPobc42l7HbcLB44WNvRuc9rjX3rWhaxJOenCpPTi_xo-fH2-djaRzW4tN8E3WBp_O0Umru2QvfvcUvc7vXmYLsny6f5jdLonhVA6kMKBLKOuK18K0YCrOddUYYXUrC8GLhoOgsoSGr0xZQSk4K0FzuhJyRbkUfIquxtxdDO97mwa1Cfvo80nFBBNlLST7VrFRZWJIKdpW7aLLHx4UBfXdlxr7UhnUT1-KZRMfTSmL_drGv-h_XF8MLWz0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2525685925</pqid></control><display><type>article</type><title>Some remarks on Hermitian manifolds satisfying Kähler-like conditions</title><source>Springer Journals</source><creator>Fino, Anna ; Tardini, Nicoletta</creator><creatorcontrib>Fino, Anna ; Tardini, Nicoletta</creatorcontrib><description>We study Hermitian metrics whose Bismut connection
∇
B
satisfies the first Bianchi identity in relation to the SKT condition and the parallelism of the torsion of the Bimut connection. We obtain a characterization of complex surfaces admitting Hermitian metrics whose Bismut connection satisfy the first Bianchi identity and the condition
R
B
(
x
,
y
,
z
,
w
)
=
R
B
(
J
x
,
J
y
,
z
,
w
)
, for every tangent vectors
x
,
y
,
z
,
w
, in terms of Vaisman metrics. These conditions, also called Bismut Kähler-like, have been recently studied in Angella et al. (Commun Anal Geom, to appear, 2018), Yau et al. (2019) and Zhao and Zheng (2019). Using the characterization of SKT almost abelian Lie groups in Arroyo and Lafuente (Proc Lond Math Soc (3) 119:266–289, 2019), we construct new examples of Hermitian manifolds satisfying the Bismut Kähler-like condition. Moreover, we prove some results in relation to the pluriclosed flow on complex surfaces and on almost abelian Lie groups. In particular, we show that, if the initial metric has constant scalar curvature, then the pluriclosed flow preserves the Vaisman condition on complex surfaces.</description><identifier>ISSN: 0025-5874</identifier><identifier>EISSN: 1432-1823</identifier><identifier>DOI: 10.1007/s00209-020-02598-2</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Lie groups ; Manifolds ; Mathematics ; Mathematics and Statistics</subject><ispartof>Mathematische Zeitschrift, 2021-06, Vol.298 (1-2), p.49-68</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-4c0a60687385cf0c733a7dc5eaf94534d3051960d3bc670653260a31b59b13953</citedby><cites>FETCH-LOGICAL-c319t-4c0a60687385cf0c733a7dc5eaf94534d3051960d3bc670653260a31b59b13953</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00209-020-02598-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00209-020-02598-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27915,27916,41479,42548,51310</link.rule.ids></links><search><creatorcontrib>Fino, Anna</creatorcontrib><creatorcontrib>Tardini, Nicoletta</creatorcontrib><title>Some remarks on Hermitian manifolds satisfying Kähler-like conditions</title><title>Mathematische Zeitschrift</title><addtitle>Math. Z</addtitle><description>We study Hermitian metrics whose Bismut connection
∇
B
satisfies the first Bianchi identity in relation to the SKT condition and the parallelism of the torsion of the Bimut connection. We obtain a characterization of complex surfaces admitting Hermitian metrics whose Bismut connection satisfy the first Bianchi identity and the condition
R
B
(
x
,
y
,
z
,
w
)
=
R
B
(
J
x
,
J
y
,
z
,
w
)
, for every tangent vectors
x
,
y
,
z
,
w
, in terms of Vaisman metrics. These conditions, also called Bismut Kähler-like, have been recently studied in Angella et al. (Commun Anal Geom, to appear, 2018), Yau et al. (2019) and Zhao and Zheng (2019). Using the characterization of SKT almost abelian Lie groups in Arroyo and Lafuente (Proc Lond Math Soc (3) 119:266–289, 2019), we construct new examples of Hermitian manifolds satisfying the Bismut Kähler-like condition. Moreover, we prove some results in relation to the pluriclosed flow on complex surfaces and on almost abelian Lie groups. In particular, we show that, if the initial metric has constant scalar curvature, then the pluriclosed flow preserves the Vaisman condition on complex surfaces.</description><subject>Lie groups</subject><subject>Manifolds</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>0025-5874</issn><issn>1432-1823</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9UL1OwzAQthBIlMILMFliNpztOIlHVFGKqMQAzJbrOMVtYhc7Hfo-vAkvhiFIbAz33fD9nO5D6JLCNQWobhIAA0ky5BGyJuwITWjBGaE148doknlBRF0Vp-gspQ1AJqtigubPobc42l7HbcLB44WNvRuc9rjX3rWhaxJOenCpPTi_xo-fH2-djaRzW4tN8E3WBp_O0Umru2QvfvcUvc7vXmYLsny6f5jdLonhVA6kMKBLKOuK18K0YCrOddUYYXUrC8GLhoOgsoSGr0xZQSk4K0FzuhJyRbkUfIquxtxdDO97mwa1Cfvo80nFBBNlLST7VrFRZWJIKdpW7aLLHx4UBfXdlxr7UhnUT1-KZRMfTSmL_drGv-h_XF8MLWz0</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Fino, Anna</creator><creator>Tardini, Nicoletta</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210601</creationdate><title>Some remarks on Hermitian manifolds satisfying Kähler-like conditions</title><author>Fino, Anna ; Tardini, Nicoletta</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-4c0a60687385cf0c733a7dc5eaf94534d3051960d3bc670653260a31b59b13953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Lie groups</topic><topic>Manifolds</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fino, Anna</creatorcontrib><creatorcontrib>Tardini, Nicoletta</creatorcontrib><collection>CrossRef</collection><jtitle>Mathematische Zeitschrift</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fino, Anna</au><au>Tardini, Nicoletta</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Some remarks on Hermitian manifolds satisfying Kähler-like conditions</atitle><jtitle>Mathematische Zeitschrift</jtitle><stitle>Math. Z</stitle><date>2021-06-01</date><risdate>2021</risdate><volume>298</volume><issue>1-2</issue><spage>49</spage><epage>68</epage><pages>49-68</pages><issn>0025-5874</issn><eissn>1432-1823</eissn><abstract>We study Hermitian metrics whose Bismut connection
∇
B
satisfies the first Bianchi identity in relation to the SKT condition and the parallelism of the torsion of the Bimut connection. We obtain a characterization of complex surfaces admitting Hermitian metrics whose Bismut connection satisfy the first Bianchi identity and the condition
R
B
(
x
,
y
,
z
,
w
)
=
R
B
(
J
x
,
J
y
,
z
,
w
)
, for every tangent vectors
x
,
y
,
z
,
w
, in terms of Vaisman metrics. These conditions, also called Bismut Kähler-like, have been recently studied in Angella et al. (Commun Anal Geom, to appear, 2018), Yau et al. (2019) and Zhao and Zheng (2019). Using the characterization of SKT almost abelian Lie groups in Arroyo and Lafuente (Proc Lond Math Soc (3) 119:266–289, 2019), we construct new examples of Hermitian manifolds satisfying the Bismut Kähler-like condition. Moreover, we prove some results in relation to the pluriclosed flow on complex surfaces and on almost abelian Lie groups. In particular, we show that, if the initial metric has constant scalar curvature, then the pluriclosed flow preserves the Vaisman condition on complex surfaces.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00209-020-02598-2</doi><tpages>20</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0025-5874 |
ispartof | Mathematische Zeitschrift, 2021-06, Vol.298 (1-2), p.49-68 |
issn | 0025-5874 1432-1823 |
language | eng |
recordid | cdi_proquest_journals_2525685925 |
source | Springer Journals |
subjects | Lie groups Manifolds Mathematics Mathematics and Statistics |
title | Some remarks on Hermitian manifolds satisfying Kähler-like conditions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T19%3A20%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Some%20remarks%20on%20Hermitian%20manifolds%20satisfying%20K%C3%A4hler-like%20conditions&rft.jtitle=Mathematische%20Zeitschrift&rft.au=Fino,%20Anna&rft.date=2021-06-01&rft.volume=298&rft.issue=1-2&rft.spage=49&rft.epage=68&rft.pages=49-68&rft.issn=0025-5874&rft.eissn=1432-1823&rft_id=info:doi/10.1007/s00209-020-02598-2&rft_dat=%3Cproquest_cross%3E2525685925%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2525685925&rft_id=info:pmid/&rfr_iscdi=true |