Some remarks on Hermitian manifolds satisfying Kähler-like conditions

We study Hermitian metrics whose Bismut connection ∇ B satisfies the first Bianchi identity in relation to the SKT condition and the parallelism of the torsion of the Bimut connection. We obtain a characterization of complex surfaces admitting Hermitian metrics whose Bismut connection satisfy the fi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematische Zeitschrift 2021-06, Vol.298 (1-2), p.49-68
Hauptverfasser: Fino, Anna, Tardini, Nicoletta
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 68
container_issue 1-2
container_start_page 49
container_title Mathematische Zeitschrift
container_volume 298
creator Fino, Anna
Tardini, Nicoletta
description We study Hermitian metrics whose Bismut connection ∇ B satisfies the first Bianchi identity in relation to the SKT condition and the parallelism of the torsion of the Bimut connection. We obtain a characterization of complex surfaces admitting Hermitian metrics whose Bismut connection satisfy the first Bianchi identity and the condition R B ( x , y , z , w ) = R B ( J x , J y , z , w ) , for every tangent vectors x ,  y ,  z ,  w , in terms of Vaisman metrics. These conditions, also called Bismut Kähler-like, have been recently studied in Angella et al. (Commun Anal Geom, to appear, 2018), Yau et al. (2019) and Zhao and Zheng (2019). Using the characterization of SKT almost abelian Lie groups in Arroyo and Lafuente (Proc Lond Math Soc (3) 119:266–289, 2019), we construct new examples of Hermitian manifolds satisfying the Bismut Kähler-like condition. Moreover, we prove some results in relation to the pluriclosed flow on complex surfaces and on almost abelian Lie groups. In particular, we show that, if the initial metric has constant scalar curvature, then the pluriclosed flow preserves the Vaisman condition on complex surfaces.
doi_str_mv 10.1007/s00209-020-02598-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2525685925</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2525685925</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-4c0a60687385cf0c733a7dc5eaf94534d3051960d3bc670653260a31b59b13953</originalsourceid><addsrcrecordid>eNp9UL1OwzAQthBIlMILMFliNpztOIlHVFGKqMQAzJbrOMVtYhc7Hfo-vAkvhiFIbAz33fD9nO5D6JLCNQWobhIAA0ky5BGyJuwITWjBGaE148doknlBRF0Vp-gspQ1AJqtigubPobc42l7HbcLB44WNvRuc9rjX3rWhaxJOenCpPTi_xo-fH2-djaRzW4tN8E3WBp_O0Umru2QvfvcUvc7vXmYLsny6f5jdLonhVA6kMKBLKOuK18K0YCrOddUYYXUrC8GLhoOgsoSGr0xZQSk4K0FzuhJyRbkUfIquxtxdDO97mwa1Cfvo80nFBBNlLST7VrFRZWJIKdpW7aLLHx4UBfXdlxr7UhnUT1-KZRMfTSmL_drGv-h_XF8MLWz0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2525685925</pqid></control><display><type>article</type><title>Some remarks on Hermitian manifolds satisfying Kähler-like conditions</title><source>Springer Journals</source><creator>Fino, Anna ; Tardini, Nicoletta</creator><creatorcontrib>Fino, Anna ; Tardini, Nicoletta</creatorcontrib><description>We study Hermitian metrics whose Bismut connection ∇ B satisfies the first Bianchi identity in relation to the SKT condition and the parallelism of the torsion of the Bimut connection. We obtain a characterization of complex surfaces admitting Hermitian metrics whose Bismut connection satisfy the first Bianchi identity and the condition R B ( x , y , z , w ) = R B ( J x , J y , z , w ) , for every tangent vectors x ,  y ,  z ,  w , in terms of Vaisman metrics. These conditions, also called Bismut Kähler-like, have been recently studied in Angella et al. (Commun Anal Geom, to appear, 2018), Yau et al. (2019) and Zhao and Zheng (2019). Using the characterization of SKT almost abelian Lie groups in Arroyo and Lafuente (Proc Lond Math Soc (3) 119:266–289, 2019), we construct new examples of Hermitian manifolds satisfying the Bismut Kähler-like condition. Moreover, we prove some results in relation to the pluriclosed flow on complex surfaces and on almost abelian Lie groups. In particular, we show that, if the initial metric has constant scalar curvature, then the pluriclosed flow preserves the Vaisman condition on complex surfaces.</description><identifier>ISSN: 0025-5874</identifier><identifier>EISSN: 1432-1823</identifier><identifier>DOI: 10.1007/s00209-020-02598-2</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Lie groups ; Manifolds ; Mathematics ; Mathematics and Statistics</subject><ispartof>Mathematische Zeitschrift, 2021-06, Vol.298 (1-2), p.49-68</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-4c0a60687385cf0c733a7dc5eaf94534d3051960d3bc670653260a31b59b13953</citedby><cites>FETCH-LOGICAL-c319t-4c0a60687385cf0c733a7dc5eaf94534d3051960d3bc670653260a31b59b13953</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00209-020-02598-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00209-020-02598-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27915,27916,41479,42548,51310</link.rule.ids></links><search><creatorcontrib>Fino, Anna</creatorcontrib><creatorcontrib>Tardini, Nicoletta</creatorcontrib><title>Some remarks on Hermitian manifolds satisfying Kähler-like conditions</title><title>Mathematische Zeitschrift</title><addtitle>Math. Z</addtitle><description>We study Hermitian metrics whose Bismut connection ∇ B satisfies the first Bianchi identity in relation to the SKT condition and the parallelism of the torsion of the Bimut connection. We obtain a characterization of complex surfaces admitting Hermitian metrics whose Bismut connection satisfy the first Bianchi identity and the condition R B ( x , y , z , w ) = R B ( J x , J y , z , w ) , for every tangent vectors x ,  y ,  z ,  w , in terms of Vaisman metrics. These conditions, also called Bismut Kähler-like, have been recently studied in Angella et al. (Commun Anal Geom, to appear, 2018), Yau et al. (2019) and Zhao and Zheng (2019). Using the characterization of SKT almost abelian Lie groups in Arroyo and Lafuente (Proc Lond Math Soc (3) 119:266–289, 2019), we construct new examples of Hermitian manifolds satisfying the Bismut Kähler-like condition. Moreover, we prove some results in relation to the pluriclosed flow on complex surfaces and on almost abelian Lie groups. In particular, we show that, if the initial metric has constant scalar curvature, then the pluriclosed flow preserves the Vaisman condition on complex surfaces.</description><subject>Lie groups</subject><subject>Manifolds</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>0025-5874</issn><issn>1432-1823</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9UL1OwzAQthBIlMILMFliNpztOIlHVFGKqMQAzJbrOMVtYhc7Hfo-vAkvhiFIbAz33fD9nO5D6JLCNQWobhIAA0ky5BGyJuwITWjBGaE148doknlBRF0Vp-gspQ1AJqtigubPobc42l7HbcLB44WNvRuc9rjX3rWhaxJOenCpPTi_xo-fH2-djaRzW4tN8E3WBp_O0Umru2QvfvcUvc7vXmYLsny6f5jdLonhVA6kMKBLKOuK18K0YCrOddUYYXUrC8GLhoOgsoSGr0xZQSk4K0FzuhJyRbkUfIquxtxdDO97mwa1Cfvo80nFBBNlLST7VrFRZWJIKdpW7aLLHx4UBfXdlxr7UhnUT1-KZRMfTSmL_drGv-h_XF8MLWz0</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Fino, Anna</creator><creator>Tardini, Nicoletta</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210601</creationdate><title>Some remarks on Hermitian manifolds satisfying Kähler-like conditions</title><author>Fino, Anna ; Tardini, Nicoletta</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-4c0a60687385cf0c733a7dc5eaf94534d3051960d3bc670653260a31b59b13953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Lie groups</topic><topic>Manifolds</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fino, Anna</creatorcontrib><creatorcontrib>Tardini, Nicoletta</creatorcontrib><collection>CrossRef</collection><jtitle>Mathematische Zeitschrift</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fino, Anna</au><au>Tardini, Nicoletta</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Some remarks on Hermitian manifolds satisfying Kähler-like conditions</atitle><jtitle>Mathematische Zeitschrift</jtitle><stitle>Math. Z</stitle><date>2021-06-01</date><risdate>2021</risdate><volume>298</volume><issue>1-2</issue><spage>49</spage><epage>68</epage><pages>49-68</pages><issn>0025-5874</issn><eissn>1432-1823</eissn><abstract>We study Hermitian metrics whose Bismut connection ∇ B satisfies the first Bianchi identity in relation to the SKT condition and the parallelism of the torsion of the Bimut connection. We obtain a characterization of complex surfaces admitting Hermitian metrics whose Bismut connection satisfy the first Bianchi identity and the condition R B ( x , y , z , w ) = R B ( J x , J y , z , w ) , for every tangent vectors x ,  y ,  z ,  w , in terms of Vaisman metrics. These conditions, also called Bismut Kähler-like, have been recently studied in Angella et al. (Commun Anal Geom, to appear, 2018), Yau et al. (2019) and Zhao and Zheng (2019). Using the characterization of SKT almost abelian Lie groups in Arroyo and Lafuente (Proc Lond Math Soc (3) 119:266–289, 2019), we construct new examples of Hermitian manifolds satisfying the Bismut Kähler-like condition. Moreover, we prove some results in relation to the pluriclosed flow on complex surfaces and on almost abelian Lie groups. In particular, we show that, if the initial metric has constant scalar curvature, then the pluriclosed flow preserves the Vaisman condition on complex surfaces.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00209-020-02598-2</doi><tpages>20</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0025-5874
ispartof Mathematische Zeitschrift, 2021-06, Vol.298 (1-2), p.49-68
issn 0025-5874
1432-1823
language eng
recordid cdi_proquest_journals_2525685925
source Springer Journals
subjects Lie groups
Manifolds
Mathematics
Mathematics and Statistics
title Some remarks on Hermitian manifolds satisfying Kähler-like conditions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T19%3A20%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Some%20remarks%20on%20Hermitian%20manifolds%20satisfying%20K%C3%A4hler-like%20conditions&rft.jtitle=Mathematische%20Zeitschrift&rft.au=Fino,%20Anna&rft.date=2021-06-01&rft.volume=298&rft.issue=1-2&rft.spage=49&rft.epage=68&rft.pages=49-68&rft.issn=0025-5874&rft.eissn=1432-1823&rft_id=info:doi/10.1007/s00209-020-02598-2&rft_dat=%3Cproquest_cross%3E2525685925%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2525685925&rft_id=info:pmid/&rfr_iscdi=true