A novel numerical scheme for a time fractional Black–Scholes equation

This paper consists of two parts. On one hand, the regularity of the solution of the time-fractional Black–Scholes equation is investigated. On the other hand, to overcome the difficulty of initial layer, a modified L 1 time discretization is presented based on a change of variable. And the spatial...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied mathematics & computing 2021-06, Vol.66 (1-2), p.853-870
Hauptverfasser: She, Mianfu, Li, Lili, Tang, Renxuan, Li, Dongfang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 870
container_issue 1-2
container_start_page 853
container_title Journal of applied mathematics & computing
container_volume 66
creator She, Mianfu
Li, Lili
Tang, Renxuan
Li, Dongfang
description This paper consists of two parts. On one hand, the regularity of the solution of the time-fractional Black–Scholes equation is investigated. On the other hand, to overcome the difficulty of initial layer, a modified L 1 time discretization is presented based on a change of variable. And the spatial discretization is done by using the Chebyshev Galerkin method. Optimal error estimates of the fully-discrete scheme are obtained. Finally, several numerical results are given to confirm the theoretical results.
doi_str_mv 10.1007/s12190-020-01467-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2525685680</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2525685680</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-b8db0678c84c0ff9cc6ffd79d780dcb4e794fbd8f0f38f978779179f2579ba403</originalsourceid><addsrcrecordid>eNp9UMFKxDAQDaLguvoDngKeo0naNMlxXXQVFjyo55Cmidu1bXaTVvDmP_iHfompFbwJM8ww896b4QFwTvAlwZhfRUKJxAjTlCQvOJIHYEZEwRDFgh2mnkmBWBocg5MYtxgXXGI5A6sF7PybbWA3tDbURjcwmo1tLXQ-QA37emyDNn3tu7S8brR5_fr4fDQb39gI7X7Q4-oUHDndRHv2W-fg-fbmaXmH1g-r--VijUxGZI9KUZXptDAiN9g5aUzhXMVlxQWuTJlbLnNXVsJhlwknueBcEi4dZVyWOsfZHFxMurvg94ONvdr6IaTPoqKMskKkGFF0QpngYwzWqV2oWx3eFcFqNExNhqlkmPoxTMlEyiZSTODuxYY_6X9Y34u0bt8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2525685680</pqid></control><display><type>article</type><title>A novel numerical scheme for a time fractional Black–Scholes equation</title><source>Springer journals</source><creator>She, Mianfu ; Li, Lili ; Tang, Renxuan ; Li, Dongfang</creator><creatorcontrib>She, Mianfu ; Li, Lili ; Tang, Renxuan ; Li, Dongfang</creatorcontrib><description>This paper consists of two parts. On one hand, the regularity of the solution of the time-fractional Black–Scholes equation is investigated. On the other hand, to overcome the difficulty of initial layer, a modified L 1 time discretization is presented based on a change of variable. And the spatial discretization is done by using the Chebyshev Galerkin method. Optimal error estimates of the fully-discrete scheme are obtained. Finally, several numerical results are given to confirm the theoretical results.</description><identifier>ISSN: 1598-5865</identifier><identifier>EISSN: 1865-2085</identifier><identifier>DOI: 10.1007/s12190-020-01467-9</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied mathematics ; Black-Scholes equation ; Chebyshev approximation ; Computational Mathematics and Numerical Analysis ; Discretization ; Galerkin method ; Mathematical and Computational Engineering ; Mathematics ; Mathematics and Statistics ; Mathematics of Computing ; Original Research ; Theory of Computation</subject><ispartof>Journal of applied mathematics &amp; computing, 2021-06, Vol.66 (1-2), p.853-870</ispartof><rights>Korean Society for Informatics and Computational Applied Mathematics 2020</rights><rights>Korean Society for Informatics and Computational Applied Mathematics 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-b8db0678c84c0ff9cc6ffd79d780dcb4e794fbd8f0f38f978779179f2579ba403</citedby><cites>FETCH-LOGICAL-c319t-b8db0678c84c0ff9cc6ffd79d780dcb4e794fbd8f0f38f978779179f2579ba403</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12190-020-01467-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12190-020-01467-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>She, Mianfu</creatorcontrib><creatorcontrib>Li, Lili</creatorcontrib><creatorcontrib>Tang, Renxuan</creatorcontrib><creatorcontrib>Li, Dongfang</creatorcontrib><title>A novel numerical scheme for a time fractional Black–Scholes equation</title><title>Journal of applied mathematics &amp; computing</title><addtitle>J. Appl. Math. Comput</addtitle><description>This paper consists of two parts. On one hand, the regularity of the solution of the time-fractional Black–Scholes equation is investigated. On the other hand, to overcome the difficulty of initial layer, a modified L 1 time discretization is presented based on a change of variable. And the spatial discretization is done by using the Chebyshev Galerkin method. Optimal error estimates of the fully-discrete scheme are obtained. Finally, several numerical results are given to confirm the theoretical results.</description><subject>Applied mathematics</subject><subject>Black-Scholes equation</subject><subject>Chebyshev approximation</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Discretization</subject><subject>Galerkin method</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Mathematics of Computing</subject><subject>Original Research</subject><subject>Theory of Computation</subject><issn>1598-5865</issn><issn>1865-2085</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9UMFKxDAQDaLguvoDngKeo0naNMlxXXQVFjyo55Cmidu1bXaTVvDmP_iHfompFbwJM8ww896b4QFwTvAlwZhfRUKJxAjTlCQvOJIHYEZEwRDFgh2mnkmBWBocg5MYtxgXXGI5A6sF7PybbWA3tDbURjcwmo1tLXQ-QA37emyDNn3tu7S8brR5_fr4fDQb39gI7X7Q4-oUHDndRHv2W-fg-fbmaXmH1g-r--VijUxGZI9KUZXptDAiN9g5aUzhXMVlxQWuTJlbLnNXVsJhlwknueBcEi4dZVyWOsfZHFxMurvg94ONvdr6IaTPoqKMskKkGFF0QpngYwzWqV2oWx3eFcFqNExNhqlkmPoxTMlEyiZSTODuxYY_6X9Y34u0bt8</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>She, Mianfu</creator><creator>Li, Lili</creator><creator>Tang, Renxuan</creator><creator>Li, Dongfang</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20210601</creationdate><title>A novel numerical scheme for a time fractional Black–Scholes equation</title><author>She, Mianfu ; Li, Lili ; Tang, Renxuan ; Li, Dongfang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-b8db0678c84c0ff9cc6ffd79d780dcb4e794fbd8f0f38f978779179f2579ba403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Applied mathematics</topic><topic>Black-Scholes equation</topic><topic>Chebyshev approximation</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Discretization</topic><topic>Galerkin method</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Mathematics of Computing</topic><topic>Original Research</topic><topic>Theory of Computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>She, Mianfu</creatorcontrib><creatorcontrib>Li, Lili</creatorcontrib><creatorcontrib>Tang, Renxuan</creatorcontrib><creatorcontrib>Li, Dongfang</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of applied mathematics &amp; computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>She, Mianfu</au><au>Li, Lili</au><au>Tang, Renxuan</au><au>Li, Dongfang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A novel numerical scheme for a time fractional Black–Scholes equation</atitle><jtitle>Journal of applied mathematics &amp; computing</jtitle><stitle>J. Appl. Math. Comput</stitle><date>2021-06-01</date><risdate>2021</risdate><volume>66</volume><issue>1-2</issue><spage>853</spage><epage>870</epage><pages>853-870</pages><issn>1598-5865</issn><eissn>1865-2085</eissn><abstract>This paper consists of two parts. On one hand, the regularity of the solution of the time-fractional Black–Scholes equation is investigated. On the other hand, to overcome the difficulty of initial layer, a modified L 1 time discretization is presented based on a change of variable. And the spatial discretization is done by using the Chebyshev Galerkin method. Optimal error estimates of the fully-discrete scheme are obtained. Finally, several numerical results are given to confirm the theoretical results.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s12190-020-01467-9</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1598-5865
ispartof Journal of applied mathematics & computing, 2021-06, Vol.66 (1-2), p.853-870
issn 1598-5865
1865-2085
language eng
recordid cdi_proquest_journals_2525685680
source Springer journals
subjects Applied mathematics
Black-Scholes equation
Chebyshev approximation
Computational Mathematics and Numerical Analysis
Discretization
Galerkin method
Mathematical and Computational Engineering
Mathematics
Mathematics and Statistics
Mathematics of Computing
Original Research
Theory of Computation
title A novel numerical scheme for a time fractional Black–Scholes equation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T08%3A38%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20novel%20numerical%20scheme%20for%20a%20time%20fractional%20Black%E2%80%93Scholes%20equation&rft.jtitle=Journal%20of%20applied%20mathematics%20&%20computing&rft.au=She,%20Mianfu&rft.date=2021-06-01&rft.volume=66&rft.issue=1-2&rft.spage=853&rft.epage=870&rft.pages=853-870&rft.issn=1598-5865&rft.eissn=1865-2085&rft_id=info:doi/10.1007/s12190-020-01467-9&rft_dat=%3Cproquest_cross%3E2525685680%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2525685680&rft_id=info:pmid/&rfr_iscdi=true