Superconductivity in Layered van der Waals Hydrogenated Germanene at High Pressure

Structural and superconducting transitions of layered van der Waals (vdW) hydrogenated germanene (GeH) were observed under high-pressure compression and decompression processes. GeH possesses a superconducting transition at critical temperature (Tc) of 5.41 K at 8.39 GPa. A crystalline to amorphous...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2021-06
Hauptverfasser: Xi, Yilian, Jing, Xiaoling, Xu, Zhongfei, Liu, Nana, Liu, Yani, Miao-Ling, Lin, Yang, Ming, Sun, Ying, Zhuang, Jincheng, Xu, Xun, Hao, Weichang, Li, Yanchun, Li, Xiaodong, Ping-Heng, Tan, Li, Quanjun, Liu, Bingbing, Shi Xue Dou, Du, Yi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Xi, Yilian
Jing, Xiaoling
Xu, Zhongfei
Liu, Nana
Liu, Yani
Miao-Ling, Lin
Yang, Ming
Sun, Ying
Zhuang, Jincheng
Xu, Xun
Hao, Weichang
Li, Yanchun
Li, Xiaodong
Ping-Heng, Tan
Li, Quanjun
Liu, Bingbing
Shi Xue Dou
Du, Yi
description Structural and superconducting transitions of layered van der Waals (vdW) hydrogenated germanene (GeH) were observed under high-pressure compression and decompression processes. GeH possesses a superconducting transition at critical temperature (Tc) of 5.41 K at 8.39 GPa. A crystalline to amorphous transition occurs at 16.80 GPa while superconductivity remains. An abnormally increased Tc up to 6.1 K has been observed in the decompression process while the GeH remained amorphous. Thorough in-situ high-pressure synchrotron X-ray diffraction and in-situ high-pressure Raman spectroscopy with the density functional theory simulations suggest that the superconductivity of GeH should be attributed to the increased density of states at the Fermi level as well as the enhanced electron-phonon coupling effect under high pressure. The decompression-driven superconductivity enhancement arises from pressure-induced phonon softening related to an in-plane Ge-Ge phonon mode. As an amorphous metal hydride superconductor, GeH provides a platform to study amorphous hydride superconductivity in layered vdW materials.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2525269926</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2525269926</sourcerecordid><originalsourceid>FETCH-proquest_journals_25252699263</originalsourceid><addsrcrecordid>eNqNirEKwjAUAIMgWLT_8MC5UFNb7SxqBwdRwbGE5llTNKkvSaF_bwY_QG644W7CIp5lq2S75nzGYmu7NE15seF5nkXscvU9UmO09I1Tg3IjKA0nMSKhhEFokEhwF-JloRolmRa1cCEdkd5Co0YQDirVPuFMaK0nXLDpI-wY_zxny8P-tquSnszHo3V1ZzzpkGqeB4qy5EX23_UFEPk_3g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2525269926</pqid></control><display><type>article</type><title>Superconductivity in Layered van der Waals Hydrogenated Germanene at High Pressure</title><source>Free E- Journals</source><creator>Xi, Yilian ; Jing, Xiaoling ; Xu, Zhongfei ; Liu, Nana ; Liu, Yani ; Miao-Ling, Lin ; Yang, Ming ; Sun, Ying ; Zhuang, Jincheng ; Xu, Xun ; Hao, Weichang ; Li, Yanchun ; Li, Xiaodong ; Ping-Heng, Tan ; Li, Quanjun ; Liu, Bingbing ; Shi Xue Dou ; Du, Yi</creator><creatorcontrib>Xi, Yilian ; Jing, Xiaoling ; Xu, Zhongfei ; Liu, Nana ; Liu, Yani ; Miao-Ling, Lin ; Yang, Ming ; Sun, Ying ; Zhuang, Jincheng ; Xu, Xun ; Hao, Weichang ; Li, Yanchun ; Li, Xiaodong ; Ping-Heng, Tan ; Li, Quanjun ; Liu, Bingbing ; Shi Xue Dou ; Du, Yi</creatorcontrib><description>Structural and superconducting transitions of layered van der Waals (vdW) hydrogenated germanene (GeH) were observed under high-pressure compression and decompression processes. GeH possesses a superconducting transition at critical temperature (Tc) of 5.41 K at 8.39 GPa. A crystalline to amorphous transition occurs at 16.80 GPa while superconductivity remains. An abnormally increased Tc up to 6.1 K has been observed in the decompression process while the GeH remained amorphous. Thorough in-situ high-pressure synchrotron X-ray diffraction and in-situ high-pressure Raman spectroscopy with the density functional theory simulations suggest that the superconductivity of GeH should be attributed to the increased density of states at the Fermi level as well as the enhanced electron-phonon coupling effect under high pressure. The decompression-driven superconductivity enhancement arises from pressure-induced phonon softening related to an in-plane Ge-Ge phonon mode. As an amorphous metal hydride superconductor, GeH provides a platform to study amorphous hydride superconductivity in layered vdW materials.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Amorphous materials ; Density functional theory ; Germanium ; Hydrogenation ; Metal hydrides ; Phonons ; Pressure effects ; Raman spectroscopy ; Superconductivity ; Synchrotron radiation ; Synchrotrons</subject><ispartof>arXiv.org, 2021-06</ispartof><rights>2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>778,782</link.rule.ids></links><search><creatorcontrib>Xi, Yilian</creatorcontrib><creatorcontrib>Jing, Xiaoling</creatorcontrib><creatorcontrib>Xu, Zhongfei</creatorcontrib><creatorcontrib>Liu, Nana</creatorcontrib><creatorcontrib>Liu, Yani</creatorcontrib><creatorcontrib>Miao-Ling, Lin</creatorcontrib><creatorcontrib>Yang, Ming</creatorcontrib><creatorcontrib>Sun, Ying</creatorcontrib><creatorcontrib>Zhuang, Jincheng</creatorcontrib><creatorcontrib>Xu, Xun</creatorcontrib><creatorcontrib>Hao, Weichang</creatorcontrib><creatorcontrib>Li, Yanchun</creatorcontrib><creatorcontrib>Li, Xiaodong</creatorcontrib><creatorcontrib>Ping-Heng, Tan</creatorcontrib><creatorcontrib>Li, Quanjun</creatorcontrib><creatorcontrib>Liu, Bingbing</creatorcontrib><creatorcontrib>Shi Xue Dou</creatorcontrib><creatorcontrib>Du, Yi</creatorcontrib><title>Superconductivity in Layered van der Waals Hydrogenated Germanene at High Pressure</title><title>arXiv.org</title><description>Structural and superconducting transitions of layered van der Waals (vdW) hydrogenated germanene (GeH) were observed under high-pressure compression and decompression processes. GeH possesses a superconducting transition at critical temperature (Tc) of 5.41 K at 8.39 GPa. A crystalline to amorphous transition occurs at 16.80 GPa while superconductivity remains. An abnormally increased Tc up to 6.1 K has been observed in the decompression process while the GeH remained amorphous. Thorough in-situ high-pressure synchrotron X-ray diffraction and in-situ high-pressure Raman spectroscopy with the density functional theory simulations suggest that the superconductivity of GeH should be attributed to the increased density of states at the Fermi level as well as the enhanced electron-phonon coupling effect under high pressure. The decompression-driven superconductivity enhancement arises from pressure-induced phonon softening related to an in-plane Ge-Ge phonon mode. As an amorphous metal hydride superconductor, GeH provides a platform to study amorphous hydride superconductivity in layered vdW materials.</description><subject>Amorphous materials</subject><subject>Density functional theory</subject><subject>Germanium</subject><subject>Hydrogenation</subject><subject>Metal hydrides</subject><subject>Phonons</subject><subject>Pressure effects</subject><subject>Raman spectroscopy</subject><subject>Superconductivity</subject><subject>Synchrotron radiation</subject><subject>Synchrotrons</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNirEKwjAUAIMgWLT_8MC5UFNb7SxqBwdRwbGE5llTNKkvSaF_bwY_QG644W7CIp5lq2S75nzGYmu7NE15seF5nkXscvU9UmO09I1Tg3IjKA0nMSKhhEFokEhwF-JloRolmRa1cCEdkd5Co0YQDirVPuFMaK0nXLDpI-wY_zxny8P-tquSnszHo3V1ZzzpkGqeB4qy5EX23_UFEPk_3g</recordid><startdate>20210604</startdate><enddate>20210604</enddate><creator>Xi, Yilian</creator><creator>Jing, Xiaoling</creator><creator>Xu, Zhongfei</creator><creator>Liu, Nana</creator><creator>Liu, Yani</creator><creator>Miao-Ling, Lin</creator><creator>Yang, Ming</creator><creator>Sun, Ying</creator><creator>Zhuang, Jincheng</creator><creator>Xu, Xun</creator><creator>Hao, Weichang</creator><creator>Li, Yanchun</creator><creator>Li, Xiaodong</creator><creator>Ping-Heng, Tan</creator><creator>Li, Quanjun</creator><creator>Liu, Bingbing</creator><creator>Shi Xue Dou</creator><creator>Du, Yi</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20210604</creationdate><title>Superconductivity in Layered van der Waals Hydrogenated Germanene at High Pressure</title><author>Xi, Yilian ; Jing, Xiaoling ; Xu, Zhongfei ; Liu, Nana ; Liu, Yani ; Miao-Ling, Lin ; Yang, Ming ; Sun, Ying ; Zhuang, Jincheng ; Xu, Xun ; Hao, Weichang ; Li, Yanchun ; Li, Xiaodong ; Ping-Heng, Tan ; Li, Quanjun ; Liu, Bingbing ; Shi Xue Dou ; Du, Yi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_25252699263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Amorphous materials</topic><topic>Density functional theory</topic><topic>Germanium</topic><topic>Hydrogenation</topic><topic>Metal hydrides</topic><topic>Phonons</topic><topic>Pressure effects</topic><topic>Raman spectroscopy</topic><topic>Superconductivity</topic><topic>Synchrotron radiation</topic><topic>Synchrotrons</topic><toplevel>online_resources</toplevel><creatorcontrib>Xi, Yilian</creatorcontrib><creatorcontrib>Jing, Xiaoling</creatorcontrib><creatorcontrib>Xu, Zhongfei</creatorcontrib><creatorcontrib>Liu, Nana</creatorcontrib><creatorcontrib>Liu, Yani</creatorcontrib><creatorcontrib>Miao-Ling, Lin</creatorcontrib><creatorcontrib>Yang, Ming</creatorcontrib><creatorcontrib>Sun, Ying</creatorcontrib><creatorcontrib>Zhuang, Jincheng</creatorcontrib><creatorcontrib>Xu, Xun</creatorcontrib><creatorcontrib>Hao, Weichang</creatorcontrib><creatorcontrib>Li, Yanchun</creatorcontrib><creatorcontrib>Li, Xiaodong</creatorcontrib><creatorcontrib>Ping-Heng, Tan</creatorcontrib><creatorcontrib>Li, Quanjun</creatorcontrib><creatorcontrib>Liu, Bingbing</creatorcontrib><creatorcontrib>Shi Xue Dou</creatorcontrib><creatorcontrib>Du, Yi</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xi, Yilian</au><au>Jing, Xiaoling</au><au>Xu, Zhongfei</au><au>Liu, Nana</au><au>Liu, Yani</au><au>Miao-Ling, Lin</au><au>Yang, Ming</au><au>Sun, Ying</au><au>Zhuang, Jincheng</au><au>Xu, Xun</au><au>Hao, Weichang</au><au>Li, Yanchun</au><au>Li, Xiaodong</au><au>Ping-Heng, Tan</au><au>Li, Quanjun</au><au>Liu, Bingbing</au><au>Shi Xue Dou</au><au>Du, Yi</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Superconductivity in Layered van der Waals Hydrogenated Germanene at High Pressure</atitle><jtitle>arXiv.org</jtitle><date>2021-06-04</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>Structural and superconducting transitions of layered van der Waals (vdW) hydrogenated germanene (GeH) were observed under high-pressure compression and decompression processes. GeH possesses a superconducting transition at critical temperature (Tc) of 5.41 K at 8.39 GPa. A crystalline to amorphous transition occurs at 16.80 GPa while superconductivity remains. An abnormally increased Tc up to 6.1 K has been observed in the decompression process while the GeH remained amorphous. Thorough in-situ high-pressure synchrotron X-ray diffraction and in-situ high-pressure Raman spectroscopy with the density functional theory simulations suggest that the superconductivity of GeH should be attributed to the increased density of states at the Fermi level as well as the enhanced electron-phonon coupling effect under high pressure. The decompression-driven superconductivity enhancement arises from pressure-induced phonon softening related to an in-plane Ge-Ge phonon mode. As an amorphous metal hydride superconductor, GeH provides a platform to study amorphous hydride superconductivity in layered vdW materials.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2021-06
issn 2331-8422
language eng
recordid cdi_proquest_journals_2525269926
source Free E- Journals
subjects Amorphous materials
Density functional theory
Germanium
Hydrogenation
Metal hydrides
Phonons
Pressure effects
Raman spectroscopy
Superconductivity
Synchrotron radiation
Synchrotrons
title Superconductivity in Layered van der Waals Hydrogenated Germanene at High Pressure
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T05%3A21%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Superconductivity%20in%20Layered%20van%20der%20Waals%20Hydrogenated%20Germanene%20at%20High%20Pressure&rft.jtitle=arXiv.org&rft.au=Xi,%20Yilian&rft.date=2021-06-04&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2525269926%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2525269926&rft_id=info:pmid/&rfr_iscdi=true