Hemiacetal-less rapamycin derivatives designed and produced by genetic engineering of a type I polyketide synthase
Engineering polyketide synthases is one of the most promising ways of producing a variety of polyketide derivatives. Exploring the undiscovered chemical space of this medicinally important class of middle molecular weight natural products will aid in the development of improved drugs in the future....
Gespeichert in:
Veröffentlicht in: | Scientific reports 2021-05, Vol.11 (1), p.9944-9944, Article 9944 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9944 |
---|---|
container_issue | 1 |
container_start_page | 9944 |
container_title | Scientific reports |
container_volume | 11 |
creator | Kudo, Kei Nishimura, Takehiro Kozone, Ikuko Hashimoto, Junko Kagaya, Noritaka Suenaga, Hikaru Ikeda, Haruo Shin-ya, Kazuo |
description | Engineering polyketide synthases is one of the most promising ways of producing a variety of polyketide derivatives. Exploring the undiscovered chemical space of this medicinally important class of middle molecular weight natural products will aid in the development of improved drugs in the future. In previous work, we established methodology designated ‘module editing’ to precisely manipulate polyketide synthase genes cloned in a bacterial artificial chromosome. Here, in the course of investigating the engineering capacity of the rapamycin PKS, novel rapamycin derivatives
1
–
4
, which lack the hemiacetal moiety, were produced through the heterologous expression of engineered variants of the rapamycin PKS. Three kinds of module deletions in the polyketide synthase RapC were designed, and the genetically engineered vectors were prepared by the in vitro module editing technique.
Streptomyces avermitilis
SUKA34 transformed with these edited PKSs produced new rapamycin derivatives. The planar structures of
1
–
4
established based on 1D and 2D NMR, ESI–TOF–MS and UV spectra revealed that
2
and
3
had skeletons well-matched to the designs, but
1
and
4
did not. The observations provide important insights into the mechanisms of the later steps of rapamycin skeletal formation as well as the ketone-forming oxygenase RapJ. |
doi_str_mv | 10.1038/s41598-021-88583-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_proquest_journals_2525225456</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_b2430429dc1949ffa90e4ad9492f1d0d</doaj_id><sourcerecordid>2526139225</sourcerecordid><originalsourceid>FETCH-LOGICAL-c528t-977442ba1324d30a5888fac43c1c7be3e8a3b9b8c381f17d11f2c97a7063ec43</originalsourceid><addsrcrecordid>eNqNks1u1DAURiMEolXpC7BAltggoYB_J_YGCY2AjlSJTfeWY9-kHjJ2sJNW06fH05ShZYHIJjfJ-T5dR6eqXhP8gWAmP2ZOhJI1pqSWUkhW3z2rTinmoqaM0ueP5pPqPOctLpegihP1sjphTDUryvlplS5g542FyQz1ADmjZEaz21sfkIPkb8zkbyCXOfs-gEMmODSm6GZbHto96iHA5C2C0PsAJRF6FDtk0LQfAW3QGIf9j0I4QHkfpmuT4VX1ojNDhvOH-1l19fXL1fqivvz-bbP-fFlbQeVUq6bhnLaGMModw0ZIKTtjObPENi0wkIa1qpWWSdKRxhHSUasa0-AVg4KdVZul1kWz1WPyO5P2Ohqv71_E1GuTyuoD6JZyhjlVzhLFVdcZhYEbV2baEYdd6fq0dI1zuwNnIUzJDE9Kn34J_lr38UZLclgfl4J3DwUp_pwhT3rns4VhMAHinDUVdEWYolQU9O1f6DbOKZQ_daBEQbhYFYoulE0x5wTdcRmC9UEQvQiiiyD6XhB9V0JvHh_jGPmtQwHkAtxCG7tsPQQLR6wYtBKyEeLgEiVrPxU7YljHOUwl-v7_o4VmC53HgzKQ_hzyH_v_Ap2l6SU</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2525225456</pqid></control><display><type>article</type><title>Hemiacetal-less rapamycin derivatives designed and produced by genetic engineering of a type I polyketide synthase</title><source>DOAJ Directory of Open Access Journals</source><source>Nature Free</source><source>Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Springer Nature OA/Free Journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Kudo, Kei ; Nishimura, Takehiro ; Kozone, Ikuko ; Hashimoto, Junko ; Kagaya, Noritaka ; Suenaga, Hikaru ; Ikeda, Haruo ; Shin-ya, Kazuo</creator><creatorcontrib>Kudo, Kei ; Nishimura, Takehiro ; Kozone, Ikuko ; Hashimoto, Junko ; Kagaya, Noritaka ; Suenaga, Hikaru ; Ikeda, Haruo ; Shin-ya, Kazuo</creatorcontrib><description>Engineering polyketide synthases is one of the most promising ways of producing a variety of polyketide derivatives. Exploring the undiscovered chemical space of this medicinally important class of middle molecular weight natural products will aid in the development of improved drugs in the future. In previous work, we established methodology designated ‘module editing’ to precisely manipulate polyketide synthase genes cloned in a bacterial artificial chromosome. Here, in the course of investigating the engineering capacity of the rapamycin PKS, novel rapamycin derivatives
1
–
4
, which lack the hemiacetal moiety, were produced through the heterologous expression of engineered variants of the rapamycin PKS. Three kinds of module deletions in the polyketide synthase RapC were designed, and the genetically engineered vectors were prepared by the in vitro module editing technique.
Streptomyces avermitilis
SUKA34 transformed with these edited PKSs produced new rapamycin derivatives. The planar structures of
1
–
4
established based on 1D and 2D NMR, ESI–TOF–MS and UV spectra revealed that
2
and
3
had skeletons well-matched to the designs, but
1
and
4
did not. The observations provide important insights into the mechanisms of the later steps of rapamycin skeletal formation as well as the ketone-forming oxygenase RapJ.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-021-88583-z</identifier><identifier>PMID: 33976244</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/1647/1511 ; 631/92/349 ; 631/92/60 ; 639/638/92/349 ; Artificial chromosomes ; Bacterial artificial chromosomes ; Drug development ; Genetic engineering ; Humanities and Social Sciences ; Molecular weight ; multidisciplinary ; Multidisciplinary Sciences ; Natural products ; Oxygenase ; Polyketide synthase ; Rapamycin ; Science ; Science & Technology ; Science & Technology - Other Topics ; Science (multidisciplinary)</subject><ispartof>Scientific reports, 2021-05, Vol.11 (1), p.9944-9944, Article 9944</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>2</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000658755000021</woscitedreferencesoriginalsourcerecordid><cites>FETCH-LOGICAL-c528t-977442ba1324d30a5888fac43c1c7be3e8a3b9b8c381f17d11f2c97a7063ec43</cites><orcidid>0000-0001-6298-1121 ; 0000-0001-7500-9462 ; 0000-0002-6600-9193</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8113240/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8113240/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,2103,2115,27929,27930,39263,41125,42194,51581,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33976244$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kudo, Kei</creatorcontrib><creatorcontrib>Nishimura, Takehiro</creatorcontrib><creatorcontrib>Kozone, Ikuko</creatorcontrib><creatorcontrib>Hashimoto, Junko</creatorcontrib><creatorcontrib>Kagaya, Noritaka</creatorcontrib><creatorcontrib>Suenaga, Hikaru</creatorcontrib><creatorcontrib>Ikeda, Haruo</creatorcontrib><creatorcontrib>Shin-ya, Kazuo</creatorcontrib><title>Hemiacetal-less rapamycin derivatives designed and produced by genetic engineering of a type I polyketide synthase</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>SCI REP-UK</addtitle><addtitle>Sci Rep</addtitle><description>Engineering polyketide synthases is one of the most promising ways of producing a variety of polyketide derivatives. Exploring the undiscovered chemical space of this medicinally important class of middle molecular weight natural products will aid in the development of improved drugs in the future. In previous work, we established methodology designated ‘module editing’ to precisely manipulate polyketide synthase genes cloned in a bacterial artificial chromosome. Here, in the course of investigating the engineering capacity of the rapamycin PKS, novel rapamycin derivatives
1
–
4
, which lack the hemiacetal moiety, were produced through the heterologous expression of engineered variants of the rapamycin PKS. Three kinds of module deletions in the polyketide synthase RapC were designed, and the genetically engineered vectors were prepared by the in vitro module editing technique.
Streptomyces avermitilis
SUKA34 transformed with these edited PKSs produced new rapamycin derivatives. The planar structures of
1
–
4
established based on 1D and 2D NMR, ESI–TOF–MS and UV spectra revealed that
2
and
3
had skeletons well-matched to the designs, but
1
and
4
did not. The observations provide important insights into the mechanisms of the later steps of rapamycin skeletal formation as well as the ketone-forming oxygenase RapJ.</description><subject>631/1647/1511</subject><subject>631/92/349</subject><subject>631/92/60</subject><subject>639/638/92/349</subject><subject>Artificial chromosomes</subject><subject>Bacterial artificial chromosomes</subject><subject>Drug development</subject><subject>Genetic engineering</subject><subject>Humanities and Social Sciences</subject><subject>Molecular weight</subject><subject>multidisciplinary</subject><subject>Multidisciplinary Sciences</subject><subject>Natural products</subject><subject>Oxygenase</subject><subject>Polyketide synthase</subject><subject>Rapamycin</subject><subject>Science</subject><subject>Science & Technology</subject><subject>Science & Technology - Other Topics</subject><subject>Science (multidisciplinary)</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>HGBXW</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNks1u1DAURiMEolXpC7BAltggoYB_J_YGCY2AjlSJTfeWY9-kHjJ2sJNW06fH05ShZYHIJjfJ-T5dR6eqXhP8gWAmP2ZOhJI1pqSWUkhW3z2rTinmoqaM0ueP5pPqPOctLpegihP1sjphTDUryvlplS5g542FyQz1ADmjZEaz21sfkIPkb8zkbyCXOfs-gEMmODSm6GZbHto96iHA5C2C0PsAJRF6FDtk0LQfAW3QGIf9j0I4QHkfpmuT4VX1ojNDhvOH-1l19fXL1fqivvz-bbP-fFlbQeVUq6bhnLaGMModw0ZIKTtjObPENi0wkIa1qpWWSdKRxhHSUasa0-AVg4KdVZul1kWz1WPyO5P2Ohqv71_E1GuTyuoD6JZyhjlVzhLFVdcZhYEbV2baEYdd6fq0dI1zuwNnIUzJDE9Kn34J_lr38UZLclgfl4J3DwUp_pwhT3rns4VhMAHinDUVdEWYolQU9O1f6DbOKZQ_daBEQbhYFYoulE0x5wTdcRmC9UEQvQiiiyD6XhB9V0JvHh_jGPmtQwHkAtxCG7tsPQQLR6wYtBKyEeLgEiVrPxU7YljHOUwl-v7_o4VmC53HgzKQ_hzyH_v_Ap2l6SU</recordid><startdate>20210511</startdate><enddate>20210511</enddate><creator>Kudo, Kei</creator><creator>Nishimura, Takehiro</creator><creator>Kozone, Ikuko</creator><creator>Hashimoto, Junko</creator><creator>Kagaya, Noritaka</creator><creator>Suenaga, Hikaru</creator><creator>Ikeda, Haruo</creator><creator>Shin-ya, Kazuo</creator><general>Nature Publishing Group UK</general><general>NATURE PORTFOLIO</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6298-1121</orcidid><orcidid>https://orcid.org/0000-0001-7500-9462</orcidid><orcidid>https://orcid.org/0000-0002-6600-9193</orcidid></search><sort><creationdate>20210511</creationdate><title>Hemiacetal-less rapamycin derivatives designed and produced by genetic engineering of a type I polyketide synthase</title><author>Kudo, Kei ; Nishimura, Takehiro ; Kozone, Ikuko ; Hashimoto, Junko ; Kagaya, Noritaka ; Suenaga, Hikaru ; Ikeda, Haruo ; Shin-ya, Kazuo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c528t-977442ba1324d30a5888fac43c1c7be3e8a3b9b8c381f17d11f2c97a7063ec43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>631/1647/1511</topic><topic>631/92/349</topic><topic>631/92/60</topic><topic>639/638/92/349</topic><topic>Artificial chromosomes</topic><topic>Bacterial artificial chromosomes</topic><topic>Drug development</topic><topic>Genetic engineering</topic><topic>Humanities and Social Sciences</topic><topic>Molecular weight</topic><topic>multidisciplinary</topic><topic>Multidisciplinary Sciences</topic><topic>Natural products</topic><topic>Oxygenase</topic><topic>Polyketide synthase</topic><topic>Rapamycin</topic><topic>Science</topic><topic>Science & Technology</topic><topic>Science & Technology - Other Topics</topic><topic>Science (multidisciplinary)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kudo, Kei</creatorcontrib><creatorcontrib>Nishimura, Takehiro</creatorcontrib><creatorcontrib>Kozone, Ikuko</creatorcontrib><creatorcontrib>Hashimoto, Junko</creatorcontrib><creatorcontrib>Kagaya, Noritaka</creatorcontrib><creatorcontrib>Suenaga, Hikaru</creatorcontrib><creatorcontrib>Ikeda, Haruo</creatorcontrib><creatorcontrib>Shin-ya, Kazuo</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kudo, Kei</au><au>Nishimura, Takehiro</au><au>Kozone, Ikuko</au><au>Hashimoto, Junko</au><au>Kagaya, Noritaka</au><au>Suenaga, Hikaru</au><au>Ikeda, Haruo</au><au>Shin-ya, Kazuo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hemiacetal-less rapamycin derivatives designed and produced by genetic engineering of a type I polyketide synthase</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><stitle>SCI REP-UK</stitle><addtitle>Sci Rep</addtitle><date>2021-05-11</date><risdate>2021</risdate><volume>11</volume><issue>1</issue><spage>9944</spage><epage>9944</epage><pages>9944-9944</pages><artnum>9944</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Engineering polyketide synthases is one of the most promising ways of producing a variety of polyketide derivatives. Exploring the undiscovered chemical space of this medicinally important class of middle molecular weight natural products will aid in the development of improved drugs in the future. In previous work, we established methodology designated ‘module editing’ to precisely manipulate polyketide synthase genes cloned in a bacterial artificial chromosome. Here, in the course of investigating the engineering capacity of the rapamycin PKS, novel rapamycin derivatives
1
–
4
, which lack the hemiacetal moiety, were produced through the heterologous expression of engineered variants of the rapamycin PKS. Three kinds of module deletions in the polyketide synthase RapC were designed, and the genetically engineered vectors were prepared by the in vitro module editing technique.
Streptomyces avermitilis
SUKA34 transformed with these edited PKSs produced new rapamycin derivatives. The planar structures of
1
–
4
established based on 1D and 2D NMR, ESI–TOF–MS and UV spectra revealed that
2
and
3
had skeletons well-matched to the designs, but
1
and
4
did not. The observations provide important insights into the mechanisms of the later steps of rapamycin skeletal formation as well as the ketone-forming oxygenase RapJ.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>33976244</pmid><doi>10.1038/s41598-021-88583-z</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-6298-1121</orcidid><orcidid>https://orcid.org/0000-0001-7500-9462</orcidid><orcidid>https://orcid.org/0000-0002-6600-9193</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2021-05, Vol.11 (1), p.9944-9944, Article 9944 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_proquest_journals_2525225456 |
source | DOAJ Directory of Open Access Journals; Nature Free; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; EZB-FREE-00999 freely available EZB journals; PubMed Central; Springer Nature OA/Free Journals; Free Full-Text Journals in Chemistry |
subjects | 631/1647/1511 631/92/349 631/92/60 639/638/92/349 Artificial chromosomes Bacterial artificial chromosomes Drug development Genetic engineering Humanities and Social Sciences Molecular weight multidisciplinary Multidisciplinary Sciences Natural products Oxygenase Polyketide synthase Rapamycin Science Science & Technology Science & Technology - Other Topics Science (multidisciplinary) |
title | Hemiacetal-less rapamycin derivatives designed and produced by genetic engineering of a type I polyketide synthase |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T04%3A37%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hemiacetal-less%20rapamycin%20derivatives%20designed%20and%20produced%20by%20genetic%20engineering%20of%20a%20type%20I%20polyketide%20synthase&rft.jtitle=Scientific%20reports&rft.au=Kudo,%20Kei&rft.date=2021-05-11&rft.volume=11&rft.issue=1&rft.spage=9944&rft.epage=9944&rft.pages=9944-9944&rft.artnum=9944&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-021-88583-z&rft_dat=%3Cproquest_webof%3E2526139225%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2525225456&rft_id=info:pmid/33976244&rft_doaj_id=oai_doaj_org_article_b2430429dc1949ffa90e4ad9492f1d0d&rfr_iscdi=true |