Hemiacetal-less rapamycin derivatives designed and produced by genetic engineering of a type I polyketide synthase

Engineering polyketide synthases is one of the most promising ways of producing a variety of polyketide derivatives. Exploring the undiscovered chemical space of this medicinally important class of middle molecular weight natural products will aid in the development of improved drugs in the future....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2021-05, Vol.11 (1), p.9944-9944, Article 9944
Hauptverfasser: Kudo, Kei, Nishimura, Takehiro, Kozone, Ikuko, Hashimoto, Junko, Kagaya, Noritaka, Suenaga, Hikaru, Ikeda, Haruo, Shin-ya, Kazuo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9944
container_issue 1
container_start_page 9944
container_title Scientific reports
container_volume 11
creator Kudo, Kei
Nishimura, Takehiro
Kozone, Ikuko
Hashimoto, Junko
Kagaya, Noritaka
Suenaga, Hikaru
Ikeda, Haruo
Shin-ya, Kazuo
description Engineering polyketide synthases is one of the most promising ways of producing a variety of polyketide derivatives. Exploring the undiscovered chemical space of this medicinally important class of middle molecular weight natural products will aid in the development of improved drugs in the future. In previous work, we established methodology designated ‘module editing’ to precisely manipulate polyketide synthase genes cloned in a bacterial artificial chromosome. Here, in the course of investigating the engineering capacity of the rapamycin PKS, novel rapamycin derivatives 1 – 4 , which lack the hemiacetal moiety, were produced through the heterologous expression of engineered variants of the rapamycin PKS. Three kinds of module deletions in the polyketide synthase RapC were designed, and the genetically engineered vectors were prepared by the in vitro module editing technique. Streptomyces avermitilis SUKA34 transformed with these edited PKSs produced new rapamycin derivatives. The planar structures of 1 – 4 established based on 1D and 2D NMR, ESI–TOF–MS and UV spectra revealed that 2 and 3 had skeletons well-matched to the designs, but 1 and 4 did not. The observations provide important insights into the mechanisms of the later steps of rapamycin skeletal formation as well as the ketone-forming oxygenase RapJ.
doi_str_mv 10.1038/s41598-021-88583-z
format Article
fullrecord <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_proquest_journals_2525225456</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_b2430429dc1949ffa90e4ad9492f1d0d</doaj_id><sourcerecordid>2526139225</sourcerecordid><originalsourceid>FETCH-LOGICAL-c528t-977442ba1324d30a5888fac43c1c7be3e8a3b9b8c381f17d11f2c97a7063ec43</originalsourceid><addsrcrecordid>eNqNks1u1DAURiMEolXpC7BAltggoYB_J_YGCY2AjlSJTfeWY9-kHjJ2sJNW06fH05ShZYHIJjfJ-T5dR6eqXhP8gWAmP2ZOhJI1pqSWUkhW3z2rTinmoqaM0ueP5pPqPOctLpegihP1sjphTDUryvlplS5g542FyQz1ADmjZEaz21sfkIPkb8zkbyCXOfs-gEMmODSm6GZbHto96iHA5C2C0PsAJRF6FDtk0LQfAW3QGIf9j0I4QHkfpmuT4VX1ojNDhvOH-1l19fXL1fqivvz-bbP-fFlbQeVUq6bhnLaGMModw0ZIKTtjObPENi0wkIa1qpWWSdKRxhHSUasa0-AVg4KdVZul1kWz1WPyO5P2Ohqv71_E1GuTyuoD6JZyhjlVzhLFVdcZhYEbV2baEYdd6fq0dI1zuwNnIUzJDE9Kn34J_lr38UZLclgfl4J3DwUp_pwhT3rns4VhMAHinDUVdEWYolQU9O1f6DbOKZQ_daBEQbhYFYoulE0x5wTdcRmC9UEQvQiiiyD6XhB9V0JvHh_jGPmtQwHkAtxCG7tsPQQLR6wYtBKyEeLgEiVrPxU7YljHOUwl-v7_o4VmC53HgzKQ_hzyH_v_Ap2l6SU</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2525225456</pqid></control><display><type>article</type><title>Hemiacetal-less rapamycin derivatives designed and produced by genetic engineering of a type I polyketide synthase</title><source>DOAJ Directory of Open Access Journals</source><source>Nature Free</source><source>Web of Science - Science Citation Index Expanded - 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Springer Nature OA/Free Journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Kudo, Kei ; Nishimura, Takehiro ; Kozone, Ikuko ; Hashimoto, Junko ; Kagaya, Noritaka ; Suenaga, Hikaru ; Ikeda, Haruo ; Shin-ya, Kazuo</creator><creatorcontrib>Kudo, Kei ; Nishimura, Takehiro ; Kozone, Ikuko ; Hashimoto, Junko ; Kagaya, Noritaka ; Suenaga, Hikaru ; Ikeda, Haruo ; Shin-ya, Kazuo</creatorcontrib><description>Engineering polyketide synthases is one of the most promising ways of producing a variety of polyketide derivatives. Exploring the undiscovered chemical space of this medicinally important class of middle molecular weight natural products will aid in the development of improved drugs in the future. In previous work, we established methodology designated ‘module editing’ to precisely manipulate polyketide synthase genes cloned in a bacterial artificial chromosome. Here, in the course of investigating the engineering capacity of the rapamycin PKS, novel rapamycin derivatives 1 – 4 , which lack the hemiacetal moiety, were produced through the heterologous expression of engineered variants of the rapamycin PKS. Three kinds of module deletions in the polyketide synthase RapC were designed, and the genetically engineered vectors were prepared by the in vitro module editing technique. Streptomyces avermitilis SUKA34 transformed with these edited PKSs produced new rapamycin derivatives. The planar structures of 1 – 4 established based on 1D and 2D NMR, ESI–TOF–MS and UV spectra revealed that 2 and 3 had skeletons well-matched to the designs, but 1 and 4 did not. The observations provide important insights into the mechanisms of the later steps of rapamycin skeletal formation as well as the ketone-forming oxygenase RapJ.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-021-88583-z</identifier><identifier>PMID: 33976244</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/1647/1511 ; 631/92/349 ; 631/92/60 ; 639/638/92/349 ; Artificial chromosomes ; Bacterial artificial chromosomes ; Drug development ; Genetic engineering ; Humanities and Social Sciences ; Molecular weight ; multidisciplinary ; Multidisciplinary Sciences ; Natural products ; Oxygenase ; Polyketide synthase ; Rapamycin ; Science ; Science &amp; Technology ; Science &amp; Technology - Other Topics ; Science (multidisciplinary)</subject><ispartof>Scientific reports, 2021-05, Vol.11 (1), p.9944-9944, Article 9944</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>2</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000658755000021</woscitedreferencesoriginalsourcerecordid><cites>FETCH-LOGICAL-c528t-977442ba1324d30a5888fac43c1c7be3e8a3b9b8c381f17d11f2c97a7063ec43</cites><orcidid>0000-0001-6298-1121 ; 0000-0001-7500-9462 ; 0000-0002-6600-9193</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8113240/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8113240/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,2103,2115,27929,27930,39263,41125,42194,51581,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33976244$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kudo, Kei</creatorcontrib><creatorcontrib>Nishimura, Takehiro</creatorcontrib><creatorcontrib>Kozone, Ikuko</creatorcontrib><creatorcontrib>Hashimoto, Junko</creatorcontrib><creatorcontrib>Kagaya, Noritaka</creatorcontrib><creatorcontrib>Suenaga, Hikaru</creatorcontrib><creatorcontrib>Ikeda, Haruo</creatorcontrib><creatorcontrib>Shin-ya, Kazuo</creatorcontrib><title>Hemiacetal-less rapamycin derivatives designed and produced by genetic engineering of a type I polyketide synthase</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>SCI REP-UK</addtitle><addtitle>Sci Rep</addtitle><description>Engineering polyketide synthases is one of the most promising ways of producing a variety of polyketide derivatives. Exploring the undiscovered chemical space of this medicinally important class of middle molecular weight natural products will aid in the development of improved drugs in the future. In previous work, we established methodology designated ‘module editing’ to precisely manipulate polyketide synthase genes cloned in a bacterial artificial chromosome. Here, in the course of investigating the engineering capacity of the rapamycin PKS, novel rapamycin derivatives 1 – 4 , which lack the hemiacetal moiety, were produced through the heterologous expression of engineered variants of the rapamycin PKS. Three kinds of module deletions in the polyketide synthase RapC were designed, and the genetically engineered vectors were prepared by the in vitro module editing technique. Streptomyces avermitilis SUKA34 transformed with these edited PKSs produced new rapamycin derivatives. The planar structures of 1 – 4 established based on 1D and 2D NMR, ESI–TOF–MS and UV spectra revealed that 2 and 3 had skeletons well-matched to the designs, but 1 and 4 did not. The observations provide important insights into the mechanisms of the later steps of rapamycin skeletal formation as well as the ketone-forming oxygenase RapJ.</description><subject>631/1647/1511</subject><subject>631/92/349</subject><subject>631/92/60</subject><subject>639/638/92/349</subject><subject>Artificial chromosomes</subject><subject>Bacterial artificial chromosomes</subject><subject>Drug development</subject><subject>Genetic engineering</subject><subject>Humanities and Social Sciences</subject><subject>Molecular weight</subject><subject>multidisciplinary</subject><subject>Multidisciplinary Sciences</subject><subject>Natural products</subject><subject>Oxygenase</subject><subject>Polyketide synthase</subject><subject>Rapamycin</subject><subject>Science</subject><subject>Science &amp; Technology</subject><subject>Science &amp; Technology - Other Topics</subject><subject>Science (multidisciplinary)</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>HGBXW</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNks1u1DAURiMEolXpC7BAltggoYB_J_YGCY2AjlSJTfeWY9-kHjJ2sJNW06fH05ShZYHIJjfJ-T5dR6eqXhP8gWAmP2ZOhJI1pqSWUkhW3z2rTinmoqaM0ueP5pPqPOctLpegihP1sjphTDUryvlplS5g542FyQz1ADmjZEaz21sfkIPkb8zkbyCXOfs-gEMmODSm6GZbHto96iHA5C2C0PsAJRF6FDtk0LQfAW3QGIf9j0I4QHkfpmuT4VX1ojNDhvOH-1l19fXL1fqivvz-bbP-fFlbQeVUq6bhnLaGMModw0ZIKTtjObPENi0wkIa1qpWWSdKRxhHSUasa0-AVg4KdVZul1kWz1WPyO5P2Ohqv71_E1GuTyuoD6JZyhjlVzhLFVdcZhYEbV2baEYdd6fq0dI1zuwNnIUzJDE9Kn34J_lr38UZLclgfl4J3DwUp_pwhT3rns4VhMAHinDUVdEWYolQU9O1f6DbOKZQ_daBEQbhYFYoulE0x5wTdcRmC9UEQvQiiiyD6XhB9V0JvHh_jGPmtQwHkAtxCG7tsPQQLR6wYtBKyEeLgEiVrPxU7YljHOUwl-v7_o4VmC53HgzKQ_hzyH_v_Ap2l6SU</recordid><startdate>20210511</startdate><enddate>20210511</enddate><creator>Kudo, Kei</creator><creator>Nishimura, Takehiro</creator><creator>Kozone, Ikuko</creator><creator>Hashimoto, Junko</creator><creator>Kagaya, Noritaka</creator><creator>Suenaga, Hikaru</creator><creator>Ikeda, Haruo</creator><creator>Shin-ya, Kazuo</creator><general>Nature Publishing Group UK</general><general>NATURE PORTFOLIO</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6298-1121</orcidid><orcidid>https://orcid.org/0000-0001-7500-9462</orcidid><orcidid>https://orcid.org/0000-0002-6600-9193</orcidid></search><sort><creationdate>20210511</creationdate><title>Hemiacetal-less rapamycin derivatives designed and produced by genetic engineering of a type I polyketide synthase</title><author>Kudo, Kei ; Nishimura, Takehiro ; Kozone, Ikuko ; Hashimoto, Junko ; Kagaya, Noritaka ; Suenaga, Hikaru ; Ikeda, Haruo ; Shin-ya, Kazuo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c528t-977442ba1324d30a5888fac43c1c7be3e8a3b9b8c381f17d11f2c97a7063ec43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>631/1647/1511</topic><topic>631/92/349</topic><topic>631/92/60</topic><topic>639/638/92/349</topic><topic>Artificial chromosomes</topic><topic>Bacterial artificial chromosomes</topic><topic>Drug development</topic><topic>Genetic engineering</topic><topic>Humanities and Social Sciences</topic><topic>Molecular weight</topic><topic>multidisciplinary</topic><topic>Multidisciplinary Sciences</topic><topic>Natural products</topic><topic>Oxygenase</topic><topic>Polyketide synthase</topic><topic>Rapamycin</topic><topic>Science</topic><topic>Science &amp; Technology</topic><topic>Science &amp; Technology - Other Topics</topic><topic>Science (multidisciplinary)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kudo, Kei</creatorcontrib><creatorcontrib>Nishimura, Takehiro</creatorcontrib><creatorcontrib>Kozone, Ikuko</creatorcontrib><creatorcontrib>Hashimoto, Junko</creatorcontrib><creatorcontrib>Kagaya, Noritaka</creatorcontrib><creatorcontrib>Suenaga, Hikaru</creatorcontrib><creatorcontrib>Ikeda, Haruo</creatorcontrib><creatorcontrib>Shin-ya, Kazuo</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kudo, Kei</au><au>Nishimura, Takehiro</au><au>Kozone, Ikuko</au><au>Hashimoto, Junko</au><au>Kagaya, Noritaka</au><au>Suenaga, Hikaru</au><au>Ikeda, Haruo</au><au>Shin-ya, Kazuo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hemiacetal-less rapamycin derivatives designed and produced by genetic engineering of a type I polyketide synthase</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><stitle>SCI REP-UK</stitle><addtitle>Sci Rep</addtitle><date>2021-05-11</date><risdate>2021</risdate><volume>11</volume><issue>1</issue><spage>9944</spage><epage>9944</epage><pages>9944-9944</pages><artnum>9944</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Engineering polyketide synthases is one of the most promising ways of producing a variety of polyketide derivatives. Exploring the undiscovered chemical space of this medicinally important class of middle molecular weight natural products will aid in the development of improved drugs in the future. In previous work, we established methodology designated ‘module editing’ to precisely manipulate polyketide synthase genes cloned in a bacterial artificial chromosome. Here, in the course of investigating the engineering capacity of the rapamycin PKS, novel rapamycin derivatives 1 – 4 , which lack the hemiacetal moiety, were produced through the heterologous expression of engineered variants of the rapamycin PKS. Three kinds of module deletions in the polyketide synthase RapC were designed, and the genetically engineered vectors were prepared by the in vitro module editing technique. Streptomyces avermitilis SUKA34 transformed with these edited PKSs produced new rapamycin derivatives. The planar structures of 1 – 4 established based on 1D and 2D NMR, ESI–TOF–MS and UV spectra revealed that 2 and 3 had skeletons well-matched to the designs, but 1 and 4 did not. The observations provide important insights into the mechanisms of the later steps of rapamycin skeletal formation as well as the ketone-forming oxygenase RapJ.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>33976244</pmid><doi>10.1038/s41598-021-88583-z</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-6298-1121</orcidid><orcidid>https://orcid.org/0000-0001-7500-9462</orcidid><orcidid>https://orcid.org/0000-0002-6600-9193</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2021-05, Vol.11 (1), p.9944-9944, Article 9944
issn 2045-2322
2045-2322
language eng
recordid cdi_proquest_journals_2525225456
source DOAJ Directory of Open Access Journals; Nature Free; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; EZB-FREE-00999 freely available EZB journals; PubMed Central; Springer Nature OA/Free Journals; Free Full-Text Journals in Chemistry
subjects 631/1647/1511
631/92/349
631/92/60
639/638/92/349
Artificial chromosomes
Bacterial artificial chromosomes
Drug development
Genetic engineering
Humanities and Social Sciences
Molecular weight
multidisciplinary
Multidisciplinary Sciences
Natural products
Oxygenase
Polyketide synthase
Rapamycin
Science
Science & Technology
Science & Technology - Other Topics
Science (multidisciplinary)
title Hemiacetal-less rapamycin derivatives designed and produced by genetic engineering of a type I polyketide synthase
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T04%3A37%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hemiacetal-less%20rapamycin%20derivatives%20designed%20and%20produced%20by%20genetic%20engineering%20of%20a%20type%20I%20polyketide%20synthase&rft.jtitle=Scientific%20reports&rft.au=Kudo,%20Kei&rft.date=2021-05-11&rft.volume=11&rft.issue=1&rft.spage=9944&rft.epage=9944&rft.pages=9944-9944&rft.artnum=9944&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-021-88583-z&rft_dat=%3Cproquest_webof%3E2526139225%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2525225456&rft_id=info:pmid/33976244&rft_doaj_id=oai_doaj_org_article_b2430429dc1949ffa90e4ad9492f1d0d&rfr_iscdi=true