Analyzing Urban Spatial Patterns and Functional Zones Using Sina Weibo POI Data: A Case Study of Beijing

With the development of Web2.0 and mobile Internet, urban residents, a new type of “sensor”, provide us with massive amounts of volunteered geographic information (VGI). Quantifying the spatial patterns of VGI plays an increasingly important role in the understanding and development of urban spatial...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sustainability 2021-01, Vol.13 (2), p.647
Hauptverfasser: Miao, Ruomu, Wang, Yuxia, Li, Shuang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page 647
container_title Sustainability
container_volume 13
creator Miao, Ruomu
Wang, Yuxia
Li, Shuang
description With the development of Web2.0 and mobile Internet, urban residents, a new type of “sensor”, provide us with massive amounts of volunteered geographic information (VGI). Quantifying the spatial patterns of VGI plays an increasingly important role in the understanding and development of urban spatial functions. Using VGI and social media activity data, this article developed a method to automatically extract and identify urban spatial patterns and functional zones. The method is put forward based on the case of Beijing, China, and includes the following three steps: (1) Obtain multi-source urban spatial data, such as Weibo data (equivalent to Twitter in Chinese), OpenStreetMap, population data, etc.; (2) Use the hierarchical clustering algorithm, term frequency-inverse document frequency (TF-IDF) method, and improved k-means clustering algorithms to identify functional zones; (3) Compare the identified results with the actual urban land uses and verify its accuracy. The experiment results proved that our method can effectively identify urban functional zones, and the results provide new ideas for the study of urban spatial patterns and have great significance in optimizing urban spatial planning.
doi_str_mv 10.3390/su13020647
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2524980077</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2524980077</sourcerecordid><originalsourceid>FETCH-LOGICAL-c323t-5d65db6780dd1163ae1c0f175a5039583d324f0d6f97aa23aa7d180f8bbcbfe43</originalsourceid><addsrcrecordid>eNp90MFKAzEQBuAgCpbai08Q8CasTpLdZNdbrVYLhRZqEbwss5tEt9RsTbKH-vSuVNCTc5k5fDMMPyHnDK6EKOA6dEwAB5mqIzLgoFjCIIPjP_MpGYWwgb6EYAWTA_I2drjdfzbula59hY6udhgb3NIlxmi8CxSdptPO1bFpe0pfWmcCXYfvjVXjkD6bpmrpcjGjdxjxho7pBIOhq9jpPW0tvTXNpsdn5MTiNpjRTx-S9fT-afKYzBcPs8l4ntSCi5hkWma6kioHrRmTAg2rwTKVYQaiyHKhBU8taGkLhcgFotIsB5tXVV1Zk4ohuTjc3fn2ozMhlpu28_3noeQZT4scQKl_VapywaCQsleXB1X7NgRvbLnzzTv6fcmg_I68_I1cfAHER3EY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2478310966</pqid></control><display><type>article</type><title>Analyzing Urban Spatial Patterns and Functional Zones Using Sina Weibo POI Data: A Case Study of Beijing</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Miao, Ruomu ; Wang, Yuxia ; Li, Shuang</creator><creatorcontrib>Miao, Ruomu ; Wang, Yuxia ; Li, Shuang</creatorcontrib><description>With the development of Web2.0 and mobile Internet, urban residents, a new type of “sensor”, provide us with massive amounts of volunteered geographic information (VGI). Quantifying the spatial patterns of VGI plays an increasingly important role in the understanding and development of urban spatial functions. Using VGI and social media activity data, this article developed a method to automatically extract and identify urban spatial patterns and functional zones. The method is put forward based on the case of Beijing, China, and includes the following three steps: (1) Obtain multi-source urban spatial data, such as Weibo data (equivalent to Twitter in Chinese), OpenStreetMap, population data, etc.; (2) Use the hierarchical clustering algorithm, term frequency-inverse document frequency (TF-IDF) method, and improved k-means clustering algorithms to identify functional zones; (3) Compare the identified results with the actual urban land uses and verify its accuracy. The experiment results proved that our method can effectively identify urban functional zones, and the results provide new ideas for the study of urban spatial patterns and have great significance in optimizing urban spatial planning.</description><identifier>ISSN: 2071-1050</identifier><identifier>EISSN: 2071-1050</identifier><identifier>DOI: 10.3390/su13020647</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; Big Data ; Cellular telephones ; Cities ; Clustering ; Communication ; Digital mapping ; Digital media ; Global positioning systems ; GPS ; Population ; Roads &amp; highways ; Social networks ; Spatial data ; Tourist attractions ; Urban areas ; Urban planning</subject><ispartof>Sustainability, 2021-01, Vol.13 (2), p.647</ispartof><rights>2021. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c323t-5d65db6780dd1163ae1c0f175a5039583d324f0d6f97aa23aa7d180f8bbcbfe43</citedby><cites>FETCH-LOGICAL-c323t-5d65db6780dd1163ae1c0f175a5039583d324f0d6f97aa23aa7d180f8bbcbfe43</cites><orcidid>0000-0002-5590-0730 ; 0000-0002-6095-1030</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Miao, Ruomu</creatorcontrib><creatorcontrib>Wang, Yuxia</creatorcontrib><creatorcontrib>Li, Shuang</creatorcontrib><title>Analyzing Urban Spatial Patterns and Functional Zones Using Sina Weibo POI Data: A Case Study of Beijing</title><title>Sustainability</title><description>With the development of Web2.0 and mobile Internet, urban residents, a new type of “sensor”, provide us with massive amounts of volunteered geographic information (VGI). Quantifying the spatial patterns of VGI plays an increasingly important role in the understanding and development of urban spatial functions. Using VGI and social media activity data, this article developed a method to automatically extract and identify urban spatial patterns and functional zones. The method is put forward based on the case of Beijing, China, and includes the following three steps: (1) Obtain multi-source urban spatial data, such as Weibo data (equivalent to Twitter in Chinese), OpenStreetMap, population data, etc.; (2) Use the hierarchical clustering algorithm, term frequency-inverse document frequency (TF-IDF) method, and improved k-means clustering algorithms to identify functional zones; (3) Compare the identified results with the actual urban land uses and verify its accuracy. The experiment results proved that our method can effectively identify urban functional zones, and the results provide new ideas for the study of urban spatial patterns and have great significance in optimizing urban spatial planning.</description><subject>Algorithms</subject><subject>Big Data</subject><subject>Cellular telephones</subject><subject>Cities</subject><subject>Clustering</subject><subject>Communication</subject><subject>Digital mapping</subject><subject>Digital media</subject><subject>Global positioning systems</subject><subject>GPS</subject><subject>Population</subject><subject>Roads &amp; highways</subject><subject>Social networks</subject><subject>Spatial data</subject><subject>Tourist attractions</subject><subject>Urban areas</subject><subject>Urban planning</subject><issn>2071-1050</issn><issn>2071-1050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp90MFKAzEQBuAgCpbai08Q8CasTpLdZNdbrVYLhRZqEbwss5tEt9RsTbKH-vSuVNCTc5k5fDMMPyHnDK6EKOA6dEwAB5mqIzLgoFjCIIPjP_MpGYWwgb6EYAWTA_I2drjdfzbula59hY6udhgb3NIlxmi8CxSdptPO1bFpe0pfWmcCXYfvjVXjkD6bpmrpcjGjdxjxho7pBIOhq9jpPW0tvTXNpsdn5MTiNpjRTx-S9fT-afKYzBcPs8l4ntSCi5hkWma6kioHrRmTAg2rwTKVYQaiyHKhBU8taGkLhcgFotIsB5tXVV1Zk4ohuTjc3fn2ozMhlpu28_3noeQZT4scQKl_VapywaCQsleXB1X7NgRvbLnzzTv6fcmg_I68_I1cfAHER3EY</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Miao, Ruomu</creator><creator>Wang, Yuxia</creator><creator>Li, Shuang</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>4U-</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0002-5590-0730</orcidid><orcidid>https://orcid.org/0000-0002-6095-1030</orcidid></search><sort><creationdate>20210101</creationdate><title>Analyzing Urban Spatial Patterns and Functional Zones Using Sina Weibo POI Data: A Case Study of Beijing</title><author>Miao, Ruomu ; Wang, Yuxia ; Li, Shuang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c323t-5d65db6780dd1163ae1c0f175a5039583d324f0d6f97aa23aa7d180f8bbcbfe43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Big Data</topic><topic>Cellular telephones</topic><topic>Cities</topic><topic>Clustering</topic><topic>Communication</topic><topic>Digital mapping</topic><topic>Digital media</topic><topic>Global positioning systems</topic><topic>GPS</topic><topic>Population</topic><topic>Roads &amp; highways</topic><topic>Social networks</topic><topic>Spatial data</topic><topic>Tourist attractions</topic><topic>Urban areas</topic><topic>Urban planning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Miao, Ruomu</creatorcontrib><creatorcontrib>Wang, Yuxia</creatorcontrib><creatorcontrib>Li, Shuang</creatorcontrib><collection>CrossRef</collection><collection>University Readers</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Miao, Ruomu</au><au>Wang, Yuxia</au><au>Li, Shuang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analyzing Urban Spatial Patterns and Functional Zones Using Sina Weibo POI Data: A Case Study of Beijing</atitle><jtitle>Sustainability</jtitle><date>2021-01-01</date><risdate>2021</risdate><volume>13</volume><issue>2</issue><spage>647</spage><pages>647-</pages><issn>2071-1050</issn><eissn>2071-1050</eissn><abstract>With the development of Web2.0 and mobile Internet, urban residents, a new type of “sensor”, provide us with massive amounts of volunteered geographic information (VGI). Quantifying the spatial patterns of VGI plays an increasingly important role in the understanding and development of urban spatial functions. Using VGI and social media activity data, this article developed a method to automatically extract and identify urban spatial patterns and functional zones. The method is put forward based on the case of Beijing, China, and includes the following three steps: (1) Obtain multi-source urban spatial data, such as Weibo data (equivalent to Twitter in Chinese), OpenStreetMap, population data, etc.; (2) Use the hierarchical clustering algorithm, term frequency-inverse document frequency (TF-IDF) method, and improved k-means clustering algorithms to identify functional zones; (3) Compare the identified results with the actual urban land uses and verify its accuracy. The experiment results proved that our method can effectively identify urban functional zones, and the results provide new ideas for the study of urban spatial patterns and have great significance in optimizing urban spatial planning.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/su13020647</doi><orcidid>https://orcid.org/0000-0002-5590-0730</orcidid><orcidid>https://orcid.org/0000-0002-6095-1030</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2071-1050
ispartof Sustainability, 2021-01, Vol.13 (2), p.647
issn 2071-1050
2071-1050
language eng
recordid cdi_proquest_journals_2524980077
source MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals
subjects Algorithms
Big Data
Cellular telephones
Cities
Clustering
Communication
Digital mapping
Digital media
Global positioning systems
GPS
Population
Roads & highways
Social networks
Spatial data
Tourist attractions
Urban areas
Urban planning
title Analyzing Urban Spatial Patterns and Functional Zones Using Sina Weibo POI Data: A Case Study of Beijing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T04%3A49%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analyzing%20Urban%20Spatial%20Patterns%20and%20Functional%20Zones%20Using%20Sina%20Weibo%20POI%20Data:%20A%20Case%20Study%20of%20Beijing&rft.jtitle=Sustainability&rft.au=Miao,%20Ruomu&rft.date=2021-01-01&rft.volume=13&rft.issue=2&rft.spage=647&rft.pages=647-&rft.issn=2071-1050&rft.eissn=2071-1050&rft_id=info:doi/10.3390/su13020647&rft_dat=%3Cproquest_cross%3E2524980077%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2478310966&rft_id=info:pmid/&rfr_iscdi=true