Analyzing Urban Spatial Patterns and Functional Zones Using Sina Weibo POI Data: A Case Study of Beijing

With the development of Web2.0 and mobile Internet, urban residents, a new type of “sensor”, provide us with massive amounts of volunteered geographic information (VGI). Quantifying the spatial patterns of VGI plays an increasingly important role in the understanding and development of urban spatial...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sustainability 2021-01, Vol.13 (2), p.647
Hauptverfasser: Miao, Ruomu, Wang, Yuxia, Li, Shuang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:With the development of Web2.0 and mobile Internet, urban residents, a new type of “sensor”, provide us with massive amounts of volunteered geographic information (VGI). Quantifying the spatial patterns of VGI plays an increasingly important role in the understanding and development of urban spatial functions. Using VGI and social media activity data, this article developed a method to automatically extract and identify urban spatial patterns and functional zones. The method is put forward based on the case of Beijing, China, and includes the following three steps: (1) Obtain multi-source urban spatial data, such as Weibo data (equivalent to Twitter in Chinese), OpenStreetMap, population data, etc.; (2) Use the hierarchical clustering algorithm, term frequency-inverse document frequency (TF-IDF) method, and improved k-means clustering algorithms to identify functional zones; (3) Compare the identified results with the actual urban land uses and verify its accuracy. The experiment results proved that our method can effectively identify urban functional zones, and the results provide new ideas for the study of urban spatial patterns and have great significance in optimizing urban spatial planning.
ISSN:2071-1050
2071-1050
DOI:10.3390/su13020647