Influence of Late Holocene climate on Lake Eggers hydrology, McMurdo Sound

Ice-covered lakes in Antarctica preserve records of regional hydroclimate and harbour extreme ecosystems that may serve as terrestrial analogues for exobiotic environments. Here, we examine the impacts of hydroclimate and landscape on the formation history of Lake Eggers, a small ice-sealed lake, lo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Antarctic science 2021-04, Vol.33 (2), p.217-229
Hauptverfasser: Chamberlain, E.J., Christ, A.J., Fulweiler, R.W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 229
container_issue 2
container_start_page 217
container_title Antarctic science
container_volume 33
creator Chamberlain, E.J.
Christ, A.J.
Fulweiler, R.W.
description Ice-covered lakes in Antarctica preserve records of regional hydroclimate and harbour extreme ecosystems that may serve as terrestrial analogues for exobiotic environments. Here, we examine the impacts of hydroclimate and landscape on the formation history of Lake Eggers, a small ice-sealed lake, located in the coastal polar desert of McMurdo Sound, Antarctica (78°S). Using ground penetrating radar surveys and three lake ice cores we characterize the ice morphology and chemistry. Lake ice geochemistry indicates that Lake Eggers is fed primarily from local snowmelt that accreted onto the lake surface during runoff events. Radiocarbon ages of ice-encased algae suggest basal ice formed at least 735 ± 20 calibrated years before present (1215 C.E.). Persisting through the Late Holocene, Lake Eggers alternated between periods of ice accumulation and sublimation driven by regional climate variability in the western Ross Sea. For example, particulate organic matter displayed varying δ15N ratios with depth, corresponding to sea ice fluctuations in the western Ross Sea during the Late Holocene. These results suggest a strong climatic control on the hydrologic regime shifts shaping ice formation at Lake Eggers.
doi_str_mv 10.1017/S0954102021000018
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2524648581</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0954102021000018</cupid><sourcerecordid>2524648581</sourcerecordid><originalsourceid>FETCH-LOGICAL-c269t-de3face717bd7b23523bd9a25d32a78578be95f00b8427b7fc78959577efeb743</originalsourceid><addsrcrecordid>eNp1kDFPwzAQhS0EEqXwA9gssRKwnbi2R1QVWpSKoTBHsX0OLWlc7Gbov8dRKzEgbjnp3vfudA-hW0oeKKHicUUULyhhhFGSisozNKL5hGeMCHWORoOcDfoluopxkwgmORmh10Xn2h46A9g7XNZ7wHPfegMdYNOut8PAd0n4AjxrGggRfx5sSEhzuMdLs-yD9Xjl-85eowtXtxFuTn2MPp5n79N5Vr69LKZPZWbYRO0zC7mrDQgqtBWa5Zzl2qqacZuzWkgupAbFHSFaFkxo4YyQiisuBDjQosjH6O64dxf8dw9xX218H7p0smKcFZNCckkTRY-UCT7GAK7ahfROOFSUVENk1Z_Ikic_eeqtDmvbwO_q_10_5ZZsCQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2524648581</pqid></control><display><type>article</type><title>Influence of Late Holocene climate on Lake Eggers hydrology, McMurdo Sound</title><source>Cambridge University Press Journals Complete</source><creator>Chamberlain, E.J. ; Christ, A.J. ; Fulweiler, R.W.</creator><creatorcontrib>Chamberlain, E.J. ; Christ, A.J. ; Fulweiler, R.W.</creatorcontrib><description>Ice-covered lakes in Antarctica preserve records of regional hydroclimate and harbour extreme ecosystems that may serve as terrestrial analogues for exobiotic environments. Here, we examine the impacts of hydroclimate and landscape on the formation history of Lake Eggers, a small ice-sealed lake, located in the coastal polar desert of McMurdo Sound, Antarctica (78°S). Using ground penetrating radar surveys and three lake ice cores we characterize the ice morphology and chemistry. Lake ice geochemistry indicates that Lake Eggers is fed primarily from local snowmelt that accreted onto the lake surface during runoff events. Radiocarbon ages of ice-encased algae suggest basal ice formed at least 735 ± 20 calibrated years before present (1215 C.E.). Persisting through the Late Holocene, Lake Eggers alternated between periods of ice accumulation and sublimation driven by regional climate variability in the western Ross Sea. For example, particulate organic matter displayed varying δ15N ratios with depth, corresponding to sea ice fluctuations in the western Ross Sea during the Late Holocene. These results suggest a strong climatic control on the hydrologic regime shifts shaping ice formation at Lake Eggers.</description><identifier>ISSN: 0954-1020</identifier><identifier>EISSN: 1365-2079</identifier><identifier>DOI: 10.1017/S0954102021000018</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Algae ; Archives &amp; records ; Climate control ; Climate variability ; Cores ; Earth analogs ; Geochemistry ; Grain size ; Ground penetrating radar ; Harbors ; Heat ; Holocene ; Holocene climates ; Hydroclimate ; Hydrologic regime ; Hydrology ; Ice ; Ice accumulation ; Ice cores ; Ice formation ; Lake ice ; Lakes ; Morphology ; Organic matter ; Particulate organic matter ; Physical Sciences ; Radar ; Radiocarbon dating ; Regional climates ; Runoff ; Sea ice ; Sediments ; Snowmelt ; Sublimation ; Surface runoff ; Surveys ; Temperature</subject><ispartof>Antarctic science, 2021-04, Vol.33 (2), p.217-229</ispartof><rights>Copyright © Antarctic Science Ltd 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c269t-de3face717bd7b23523bd9a25d32a78578be95f00b8427b7fc78959577efeb743</cites><orcidid>0000-0003-0871-4246 ; 0000-0003-0989-6491 ; 0000-0003-2218-3488</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0954102021000018/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,776,780,27901,27902,55603</link.rule.ids></links><search><creatorcontrib>Chamberlain, E.J.</creatorcontrib><creatorcontrib>Christ, A.J.</creatorcontrib><creatorcontrib>Fulweiler, R.W.</creatorcontrib><title>Influence of Late Holocene climate on Lake Eggers hydrology, McMurdo Sound</title><title>Antarctic science</title><addtitle>Antarctic Science</addtitle><description>Ice-covered lakes in Antarctica preserve records of regional hydroclimate and harbour extreme ecosystems that may serve as terrestrial analogues for exobiotic environments. Here, we examine the impacts of hydroclimate and landscape on the formation history of Lake Eggers, a small ice-sealed lake, located in the coastal polar desert of McMurdo Sound, Antarctica (78°S). Using ground penetrating radar surveys and three lake ice cores we characterize the ice morphology and chemistry. Lake ice geochemistry indicates that Lake Eggers is fed primarily from local snowmelt that accreted onto the lake surface during runoff events. Radiocarbon ages of ice-encased algae suggest basal ice formed at least 735 ± 20 calibrated years before present (1215 C.E.). Persisting through the Late Holocene, Lake Eggers alternated between periods of ice accumulation and sublimation driven by regional climate variability in the western Ross Sea. For example, particulate organic matter displayed varying δ15N ratios with depth, corresponding to sea ice fluctuations in the western Ross Sea during the Late Holocene. These results suggest a strong climatic control on the hydrologic regime shifts shaping ice formation at Lake Eggers.</description><subject>Algae</subject><subject>Archives &amp; records</subject><subject>Climate control</subject><subject>Climate variability</subject><subject>Cores</subject><subject>Earth analogs</subject><subject>Geochemistry</subject><subject>Grain size</subject><subject>Ground penetrating radar</subject><subject>Harbors</subject><subject>Heat</subject><subject>Holocene</subject><subject>Holocene climates</subject><subject>Hydroclimate</subject><subject>Hydrologic regime</subject><subject>Hydrology</subject><subject>Ice</subject><subject>Ice accumulation</subject><subject>Ice cores</subject><subject>Ice formation</subject><subject>Lake ice</subject><subject>Lakes</subject><subject>Morphology</subject><subject>Organic matter</subject><subject>Particulate organic matter</subject><subject>Physical Sciences</subject><subject>Radar</subject><subject>Radiocarbon dating</subject><subject>Regional climates</subject><subject>Runoff</subject><subject>Sea ice</subject><subject>Sediments</subject><subject>Snowmelt</subject><subject>Sublimation</subject><subject>Surface runoff</subject><subject>Surveys</subject><subject>Temperature</subject><issn>0954-1020</issn><issn>1365-2079</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kDFPwzAQhS0EEqXwA9gssRKwnbi2R1QVWpSKoTBHsX0OLWlc7Gbov8dRKzEgbjnp3vfudA-hW0oeKKHicUUULyhhhFGSisozNKL5hGeMCHWORoOcDfoluopxkwgmORmh10Xn2h46A9g7XNZ7wHPfegMdYNOut8PAd0n4AjxrGggRfx5sSEhzuMdLs-yD9Xjl-85eowtXtxFuTn2MPp5n79N5Vr69LKZPZWbYRO0zC7mrDQgqtBWa5Zzl2qqacZuzWkgupAbFHSFaFkxo4YyQiisuBDjQosjH6O64dxf8dw9xX218H7p0smKcFZNCckkTRY-UCT7GAK7ahfROOFSUVENk1Z_Ikic_eeqtDmvbwO_q_10_5ZZsCQ</recordid><startdate>202104</startdate><enddate>202104</enddate><creator>Chamberlain, E.J.</creator><creator>Christ, A.J.</creator><creator>Fulweiler, R.W.</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7SN</scope><scope>7SS</scope><scope>7T7</scope><scope>7TG</scope><scope>7TN</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L6V</scope><scope>M7N</scope><scope>M7S</scope><scope>P64</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0003-0871-4246</orcidid><orcidid>https://orcid.org/0000-0003-0989-6491</orcidid><orcidid>https://orcid.org/0000-0003-2218-3488</orcidid></search><sort><creationdate>202104</creationdate><title>Influence of Late Holocene climate on Lake Eggers hydrology, McMurdo Sound</title><author>Chamberlain, E.J. ; Christ, A.J. ; Fulweiler, R.W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c269t-de3face717bd7b23523bd9a25d32a78578be95f00b8427b7fc78959577efeb743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algae</topic><topic>Archives &amp; records</topic><topic>Climate control</topic><topic>Climate variability</topic><topic>Cores</topic><topic>Earth analogs</topic><topic>Geochemistry</topic><topic>Grain size</topic><topic>Ground penetrating radar</topic><topic>Harbors</topic><topic>Heat</topic><topic>Holocene</topic><topic>Holocene climates</topic><topic>Hydroclimate</topic><topic>Hydrologic regime</topic><topic>Hydrology</topic><topic>Ice</topic><topic>Ice accumulation</topic><topic>Ice cores</topic><topic>Ice formation</topic><topic>Lake ice</topic><topic>Lakes</topic><topic>Morphology</topic><topic>Organic matter</topic><topic>Particulate organic matter</topic><topic>Physical Sciences</topic><topic>Radar</topic><topic>Radiocarbon dating</topic><topic>Regional climates</topic><topic>Runoff</topic><topic>Sea ice</topic><topic>Sediments</topic><topic>Snowmelt</topic><topic>Sublimation</topic><topic>Surface runoff</topic><topic>Surveys</topic><topic>Temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chamberlain, E.J.</creatorcontrib><creatorcontrib>Christ, A.J.</creatorcontrib><creatorcontrib>Fulweiler, R.W.</creatorcontrib><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Engineering Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Antarctic science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chamberlain, E.J.</au><au>Christ, A.J.</au><au>Fulweiler, R.W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence of Late Holocene climate on Lake Eggers hydrology, McMurdo Sound</atitle><jtitle>Antarctic science</jtitle><addtitle>Antarctic Science</addtitle><date>2021-04</date><risdate>2021</risdate><volume>33</volume><issue>2</issue><spage>217</spage><epage>229</epage><pages>217-229</pages><issn>0954-1020</issn><eissn>1365-2079</eissn><abstract>Ice-covered lakes in Antarctica preserve records of regional hydroclimate and harbour extreme ecosystems that may serve as terrestrial analogues for exobiotic environments. Here, we examine the impacts of hydroclimate and landscape on the formation history of Lake Eggers, a small ice-sealed lake, located in the coastal polar desert of McMurdo Sound, Antarctica (78°S). Using ground penetrating radar surveys and three lake ice cores we characterize the ice morphology and chemistry. Lake ice geochemistry indicates that Lake Eggers is fed primarily from local snowmelt that accreted onto the lake surface during runoff events. Radiocarbon ages of ice-encased algae suggest basal ice formed at least 735 ± 20 calibrated years before present (1215 C.E.). Persisting through the Late Holocene, Lake Eggers alternated between periods of ice accumulation and sublimation driven by regional climate variability in the western Ross Sea. For example, particulate organic matter displayed varying δ15N ratios with depth, corresponding to sea ice fluctuations in the western Ross Sea during the Late Holocene. These results suggest a strong climatic control on the hydrologic regime shifts shaping ice formation at Lake Eggers.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0954102021000018</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-0871-4246</orcidid><orcidid>https://orcid.org/0000-0003-0989-6491</orcidid><orcidid>https://orcid.org/0000-0003-2218-3488</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0954-1020
ispartof Antarctic science, 2021-04, Vol.33 (2), p.217-229
issn 0954-1020
1365-2079
language eng
recordid cdi_proquest_journals_2524648581
source Cambridge University Press Journals Complete
subjects Algae
Archives & records
Climate control
Climate variability
Cores
Earth analogs
Geochemistry
Grain size
Ground penetrating radar
Harbors
Heat
Holocene
Holocene climates
Hydroclimate
Hydrologic regime
Hydrology
Ice
Ice accumulation
Ice cores
Ice formation
Lake ice
Lakes
Morphology
Organic matter
Particulate organic matter
Physical Sciences
Radar
Radiocarbon dating
Regional climates
Runoff
Sea ice
Sediments
Snowmelt
Sublimation
Surface runoff
Surveys
Temperature
title Influence of Late Holocene climate on Lake Eggers hydrology, McMurdo Sound
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T20%3A31%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20of%20Late%20Holocene%20climate%20on%20Lake%20Eggers%20hydrology,%20McMurdo%20Sound&rft.jtitle=Antarctic%20science&rft.au=Chamberlain,%20E.J.&rft.date=2021-04&rft.volume=33&rft.issue=2&rft.spage=217&rft.epage=229&rft.pages=217-229&rft.issn=0954-1020&rft.eissn=1365-2079&rft_id=info:doi/10.1017/S0954102021000018&rft_dat=%3Cproquest_cross%3E2524648581%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2524648581&rft_id=info:pmid/&rft_cupid=10_1017_S0954102021000018&rfr_iscdi=true