Cryostratigraphy of mid-Miocene permafrost at Friis Hills, McMurdo Dry Valleys of Antarctica

The origin and stability of ground ice in the stable uplands of the McMurdo Dry Valleys remains poorly understood, with most studies focusing on the near-surface permafrost. The 2016 Friis Hills Drilling Project retrieved five cores reaching 50 m depth in mid-Miocene permafrost, a period when Antarc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Antarctic science 2021-04, Vol.33 (2), p.174-188
Hauptverfasser: Verret, Marjolaine, Dickinson, Warren, Lacelle, Denis, Fisher, David, Norton, Kevin, Chorley, Hannah, Levy, Richard, Naish, Tim
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 188
container_issue 2
container_start_page 174
container_title Antarctic science
container_volume 33
creator Verret, Marjolaine
Dickinson, Warren
Lacelle, Denis
Fisher, David
Norton, Kevin
Chorley, Hannah
Levy, Richard
Naish, Tim
description The origin and stability of ground ice in the stable uplands of the McMurdo Dry Valleys remains poorly understood, with most studies focusing on the near-surface permafrost. The 2016 Friis Hills Drilling Project retrieved five cores reaching 50 m depth in mid-Miocene permafrost, a period when Antarctica transitioned to a hyper-arid environment. This study characterizes the cryostratigraphy of arguably the oldest permafrost on Earth and assesses 15 Myr of ground ice evolution using the REGO model. Four cryostratigraphic units were identified: 1) surficial dry permafrost (0–30 cm), 2) ice-rich to ice-poor permafrost (0.3–5.0 m) with high solute load and δ18O values (-16.2 ± 1.8‰) and low D-excess values (-65.6 ± 4.3‰), 3) near-dry permafrost (5–20 m) and 4) ice-poor to ice-rich permafrost (20–50 m) containing ice lenses with low solute load and δ18O values (-34.6 ± 1.2‰) and D-excess of 6.9 ± 2.6‰. The near-surface δ18O profile of ground ice is comparable to other sites in the stable uplands, suggesting that this ice is actively responding to changing surface environmental conditions and challenging the assumption that the surface has remained frozen for 13.8 Myr. The deep ice lenses probably originate from the freezing of meteoric water during the mid-Miocene, and their δ18O composition suggests mean annual air temperatures ~7–11°C warmer than today.
doi_str_mv 10.1017/S0954102020000619
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2524648514</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0954102020000619</cupid><sourcerecordid>2524648514</sourcerecordid><originalsourceid>FETCH-LOGICAL-a340t-b55d760c1b4f7ba426ec4a13cc6250c7c0a4913a8875b5b1609334101e73083a3</originalsourceid><addsrcrecordid>eNp1UDtPwzAQthBIlMIPYLPESuAc23mMVaEUqRUDjwkpujhOcZU0wXaH_HsctRID4m644Xucvo-QawZ3DFh6_wq5FAzisGESlp-QCeOJjGJI81MyGeFoxM_JhXNbABZnEibkc26HznmL3mws9l8D7Wramipam07pnaa9ti3WNnAoerqwxji6NE3jbularfe26uiDHegHNo0e3Kie7Txa5Y3CS3JWY-P01fFOyfvi8W2-jFYvT8_z2SpCLsBHpZRVmoBipajTEkWcaCWQcaWSWIJKFaDIGccsS2UpS5ZAznkIy3TKIePIp-Tm4Nvb7nuvnS-23d7uwssilrFIRCaZCCx2YKmQxlldF701LdqhYFCMJRZ_SgwaftRgW1pTbfSv9f-qH1DechM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2524648514</pqid></control><display><type>article</type><title>Cryostratigraphy of mid-Miocene permafrost at Friis Hills, McMurdo Dry Valleys of Antarctica</title><source>Cambridge University Press Journals</source><creator>Verret, Marjolaine ; Dickinson, Warren ; Lacelle, Denis ; Fisher, David ; Norton, Kevin ; Chorley, Hannah ; Levy, Richard ; Naish, Tim</creator><creatorcontrib>Verret, Marjolaine ; Dickinson, Warren ; Lacelle, Denis ; Fisher, David ; Norton, Kevin ; Chorley, Hannah ; Levy, Richard ; Naish, Tim</creatorcontrib><description>The origin and stability of ground ice in the stable uplands of the McMurdo Dry Valleys remains poorly understood, with most studies focusing on the near-surface permafrost. The 2016 Friis Hills Drilling Project retrieved five cores reaching 50 m depth in mid-Miocene permafrost, a period when Antarctica transitioned to a hyper-arid environment. This study characterizes the cryostratigraphy of arguably the oldest permafrost on Earth and assesses 15 Myr of ground ice evolution using the REGO model. Four cryostratigraphic units were identified: 1) surficial dry permafrost (0–30 cm), 2) ice-rich to ice-poor permafrost (0.3–5.0 m) with high solute load and δ18O values (-16.2 ± 1.8‰) and low D-excess values (-65.6 ± 4.3‰), 3) near-dry permafrost (5–20 m) and 4) ice-poor to ice-rich permafrost (20–50 m) containing ice lenses with low solute load and δ18O values (-34.6 ± 1.2‰) and D-excess of 6.9 ± 2.6‰. The near-surface δ18O profile of ground ice is comparable to other sites in the stable uplands, suggesting that this ice is actively responding to changing surface environmental conditions and challenging the assumption that the surface has remained frozen for 13.8 Myr. The deep ice lenses probably originate from the freezing of meteoric water during the mid-Miocene, and their δ18O composition suggests mean annual air temperatures ~7–11°C warmer than today.</description><identifier>ISSN: 0954-1020</identifier><identifier>EISSN: 1365-2079</identifier><identifier>DOI: 10.1017/S0954102020000619</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Air temperature ; Annual temperatures ; Arid environments ; Arid zones ; Aridity ; Climate change ; Cold ; Cooling ; Cores ; Drilling ; Earth Sciences ; Environmental conditions ; Freezing ; Ground ice ; Highlands ; Hills ; Humidity ; Ice ; Ice lenses ; Ice loads ; Investigations ; Lenses ; Meteoric water ; Miocene ; Permafrost ; Sea level ; Sedimentation &amp; deposition ; Sediments ; Solutes ; Stability ; Valleys</subject><ispartof>Antarctic science, 2021-04, Vol.33 (2), p.174-188</ispartof><rights>Copyright © Antarctic Science Ltd 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a340t-b55d760c1b4f7ba426ec4a13cc6250c7c0a4913a8875b5b1609334101e73083a3</citedby><cites>FETCH-LOGICAL-a340t-b55d760c1b4f7ba426ec4a13cc6250c7c0a4913a8875b5b1609334101e73083a3</cites><orcidid>0000-0002-6691-8717 ; 0000-0002-3857-526X ; 0000-0002-7363-945X ; 0000-0001-7537-9949 ; 0000-0002-5239-4748 ; 0000-0002-7995-6464 ; 0000-0002-8783-0167 ; 0000-0002-1185-9932</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0954102020000619/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,780,784,27924,27925,55628</link.rule.ids></links><search><creatorcontrib>Verret, Marjolaine</creatorcontrib><creatorcontrib>Dickinson, Warren</creatorcontrib><creatorcontrib>Lacelle, Denis</creatorcontrib><creatorcontrib>Fisher, David</creatorcontrib><creatorcontrib>Norton, Kevin</creatorcontrib><creatorcontrib>Chorley, Hannah</creatorcontrib><creatorcontrib>Levy, Richard</creatorcontrib><creatorcontrib>Naish, Tim</creatorcontrib><title>Cryostratigraphy of mid-Miocene permafrost at Friis Hills, McMurdo Dry Valleys of Antarctica</title><title>Antarctic science</title><addtitle>Antarctic Science</addtitle><description>The origin and stability of ground ice in the stable uplands of the McMurdo Dry Valleys remains poorly understood, with most studies focusing on the near-surface permafrost. The 2016 Friis Hills Drilling Project retrieved five cores reaching 50 m depth in mid-Miocene permafrost, a period when Antarctica transitioned to a hyper-arid environment. This study characterizes the cryostratigraphy of arguably the oldest permafrost on Earth and assesses 15 Myr of ground ice evolution using the REGO model. Four cryostratigraphic units were identified: 1) surficial dry permafrost (0–30 cm), 2) ice-rich to ice-poor permafrost (0.3–5.0 m) with high solute load and δ18O values (-16.2 ± 1.8‰) and low D-excess values (-65.6 ± 4.3‰), 3) near-dry permafrost (5–20 m) and 4) ice-poor to ice-rich permafrost (20–50 m) containing ice lenses with low solute load and δ18O values (-34.6 ± 1.2‰) and D-excess of 6.9 ± 2.6‰. The near-surface δ18O profile of ground ice is comparable to other sites in the stable uplands, suggesting that this ice is actively responding to changing surface environmental conditions and challenging the assumption that the surface has remained frozen for 13.8 Myr. The deep ice lenses probably originate from the freezing of meteoric water during the mid-Miocene, and their δ18O composition suggests mean annual air temperatures ~7–11°C warmer than today.</description><subject>Air temperature</subject><subject>Annual temperatures</subject><subject>Arid environments</subject><subject>Arid zones</subject><subject>Aridity</subject><subject>Climate change</subject><subject>Cold</subject><subject>Cooling</subject><subject>Cores</subject><subject>Drilling</subject><subject>Earth Sciences</subject><subject>Environmental conditions</subject><subject>Freezing</subject><subject>Ground ice</subject><subject>Highlands</subject><subject>Hills</subject><subject>Humidity</subject><subject>Ice</subject><subject>Ice lenses</subject><subject>Ice loads</subject><subject>Investigations</subject><subject>Lenses</subject><subject>Meteoric water</subject><subject>Miocene</subject><subject>Permafrost</subject><subject>Sea level</subject><subject>Sedimentation &amp; deposition</subject><subject>Sediments</subject><subject>Solutes</subject><subject>Stability</subject><subject>Valleys</subject><issn>0954-1020</issn><issn>1365-2079</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1UDtPwzAQthBIlMIPYLPESuAc23mMVaEUqRUDjwkpujhOcZU0wXaH_HsctRID4m644Xucvo-QawZ3DFh6_wq5FAzisGESlp-QCeOJjGJI81MyGeFoxM_JhXNbABZnEibkc26HznmL3mws9l8D7Wramipam07pnaa9ti3WNnAoerqwxji6NE3jbularfe26uiDHegHNo0e3Kie7Txa5Y3CS3JWY-P01fFOyfvi8W2-jFYvT8_z2SpCLsBHpZRVmoBipajTEkWcaCWQcaWSWIJKFaDIGccsS2UpS5ZAznkIy3TKIePIp-Tm4Nvb7nuvnS-23d7uwssilrFIRCaZCCx2YKmQxlldF701LdqhYFCMJRZ_SgwaftRgW1pTbfSv9f-qH1DechM</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Verret, Marjolaine</creator><creator>Dickinson, Warren</creator><creator>Lacelle, Denis</creator><creator>Fisher, David</creator><creator>Norton, Kevin</creator><creator>Chorley, Hannah</creator><creator>Levy, Richard</creator><creator>Naish, Tim</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7SN</scope><scope>7SS</scope><scope>7T7</scope><scope>7TG</scope><scope>7TN</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L6V</scope><scope>M7N</scope><scope>M7S</scope><scope>P64</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-6691-8717</orcidid><orcidid>https://orcid.org/0000-0002-3857-526X</orcidid><orcidid>https://orcid.org/0000-0002-7363-945X</orcidid><orcidid>https://orcid.org/0000-0001-7537-9949</orcidid><orcidid>https://orcid.org/0000-0002-5239-4748</orcidid><orcidid>https://orcid.org/0000-0002-7995-6464</orcidid><orcidid>https://orcid.org/0000-0002-8783-0167</orcidid><orcidid>https://orcid.org/0000-0002-1185-9932</orcidid></search><sort><creationdate>20210401</creationdate><title>Cryostratigraphy of mid-Miocene permafrost at Friis Hills, McMurdo Dry Valleys of Antarctica</title><author>Verret, Marjolaine ; Dickinson, Warren ; Lacelle, Denis ; Fisher, David ; Norton, Kevin ; Chorley, Hannah ; Levy, Richard ; Naish, Tim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a340t-b55d760c1b4f7ba426ec4a13cc6250c7c0a4913a8875b5b1609334101e73083a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Air temperature</topic><topic>Annual temperatures</topic><topic>Arid environments</topic><topic>Arid zones</topic><topic>Aridity</topic><topic>Climate change</topic><topic>Cold</topic><topic>Cooling</topic><topic>Cores</topic><topic>Drilling</topic><topic>Earth Sciences</topic><topic>Environmental conditions</topic><topic>Freezing</topic><topic>Ground ice</topic><topic>Highlands</topic><topic>Hills</topic><topic>Humidity</topic><topic>Ice</topic><topic>Ice lenses</topic><topic>Ice loads</topic><topic>Investigations</topic><topic>Lenses</topic><topic>Meteoric water</topic><topic>Miocene</topic><topic>Permafrost</topic><topic>Sea level</topic><topic>Sedimentation &amp; deposition</topic><topic>Sediments</topic><topic>Solutes</topic><topic>Stability</topic><topic>Valleys</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Verret, Marjolaine</creatorcontrib><creatorcontrib>Dickinson, Warren</creatorcontrib><creatorcontrib>Lacelle, Denis</creatorcontrib><creatorcontrib>Fisher, David</creatorcontrib><creatorcontrib>Norton, Kevin</creatorcontrib><creatorcontrib>Chorley, Hannah</creatorcontrib><creatorcontrib>Levy, Richard</creatorcontrib><creatorcontrib>Naish, Tim</creatorcontrib><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Engineering Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><jtitle>Antarctic science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Verret, Marjolaine</au><au>Dickinson, Warren</au><au>Lacelle, Denis</au><au>Fisher, David</au><au>Norton, Kevin</au><au>Chorley, Hannah</au><au>Levy, Richard</au><au>Naish, Tim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cryostratigraphy of mid-Miocene permafrost at Friis Hills, McMurdo Dry Valleys of Antarctica</atitle><jtitle>Antarctic science</jtitle><addtitle>Antarctic Science</addtitle><date>2021-04-01</date><risdate>2021</risdate><volume>33</volume><issue>2</issue><spage>174</spage><epage>188</epage><pages>174-188</pages><issn>0954-1020</issn><eissn>1365-2079</eissn><abstract>The origin and stability of ground ice in the stable uplands of the McMurdo Dry Valleys remains poorly understood, with most studies focusing on the near-surface permafrost. The 2016 Friis Hills Drilling Project retrieved five cores reaching 50 m depth in mid-Miocene permafrost, a period when Antarctica transitioned to a hyper-arid environment. This study characterizes the cryostratigraphy of arguably the oldest permafrost on Earth and assesses 15 Myr of ground ice evolution using the REGO model. Four cryostratigraphic units were identified: 1) surficial dry permafrost (0–30 cm), 2) ice-rich to ice-poor permafrost (0.3–5.0 m) with high solute load and δ18O values (-16.2 ± 1.8‰) and low D-excess values (-65.6 ± 4.3‰), 3) near-dry permafrost (5–20 m) and 4) ice-poor to ice-rich permafrost (20–50 m) containing ice lenses with low solute load and δ18O values (-34.6 ± 1.2‰) and D-excess of 6.9 ± 2.6‰. The near-surface δ18O profile of ground ice is comparable to other sites in the stable uplands, suggesting that this ice is actively responding to changing surface environmental conditions and challenging the assumption that the surface has remained frozen for 13.8 Myr. The deep ice lenses probably originate from the freezing of meteoric water during the mid-Miocene, and their δ18O composition suggests mean annual air temperatures ~7–11°C warmer than today.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0954102020000619</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-6691-8717</orcidid><orcidid>https://orcid.org/0000-0002-3857-526X</orcidid><orcidid>https://orcid.org/0000-0002-7363-945X</orcidid><orcidid>https://orcid.org/0000-0001-7537-9949</orcidid><orcidid>https://orcid.org/0000-0002-5239-4748</orcidid><orcidid>https://orcid.org/0000-0002-7995-6464</orcidid><orcidid>https://orcid.org/0000-0002-8783-0167</orcidid><orcidid>https://orcid.org/0000-0002-1185-9932</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0954-1020
ispartof Antarctic science, 2021-04, Vol.33 (2), p.174-188
issn 0954-1020
1365-2079
language eng
recordid cdi_proquest_journals_2524648514
source Cambridge University Press Journals
subjects Air temperature
Annual temperatures
Arid environments
Arid zones
Aridity
Climate change
Cold
Cooling
Cores
Drilling
Earth Sciences
Environmental conditions
Freezing
Ground ice
Highlands
Hills
Humidity
Ice
Ice lenses
Ice loads
Investigations
Lenses
Meteoric water
Miocene
Permafrost
Sea level
Sedimentation & deposition
Sediments
Solutes
Stability
Valleys
title Cryostratigraphy of mid-Miocene permafrost at Friis Hills, McMurdo Dry Valleys of Antarctica
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T06%3A18%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cryostratigraphy%20of%20mid-Miocene%20permafrost%20at%20Friis%20Hills,%20McMurdo%20Dry%20Valleys%20of%20Antarctica&rft.jtitle=Antarctic%20science&rft.au=Verret,%20Marjolaine&rft.date=2021-04-01&rft.volume=33&rft.issue=2&rft.spage=174&rft.epage=188&rft.pages=174-188&rft.issn=0954-1020&rft.eissn=1365-2079&rft_id=info:doi/10.1017/S0954102020000619&rft_dat=%3Cproquest_cross%3E2524648514%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2524648514&rft_id=info:pmid/&rft_cupid=10_1017_S0954102020000619&rfr_iscdi=true