Bayesian Multiple Change-Points Detection in a Normal Model with Heterogeneous Variances
This study considers the problem of multiple change-points detection. For this problem, we develop an objective Bayesian multiple change-points detection procedure in a normal model with heterogeneous variances. Our Bayesian procedure is based on a combination of binary segmentation and the idea of...
Gespeichert in:
Veröffentlicht in: | Computational statistics 2021-06, Vol.36 (2), p.1365-1390 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1390 |
---|---|
container_issue | 2 |
container_start_page | 1365 |
container_title | Computational statistics |
container_volume | 36 |
creator | Kang, Sang Gil Lee, Woo Dong Kim, Yongku |
description | This study considers the problem of multiple change-points detection. For this problem, we develop an objective Bayesian multiple change-points detection procedure in a normal model with heterogeneous variances. Our Bayesian procedure is based on a combination of binary segmentation and the idea of the screening and ranking algorithm (Niu and Zhang in Ann Appl Stat 6:1306–1326, 2012). Using the screening and ranking algorithm, we can overcome the drawbacks of binary segmentation, as it cannot detect a small segment of structural change in the middle of a large segment or segments of structural changes with small jump magnitude. We propose a detection procedure based on a Bayesian model selection procedure to address this problem in which no subjective input is considered. We construct intrinsic priors for which the Bayes factors and model selection probabilities are well defined. We find that for large sample sizes, our method based on Bayes factors with intrinsic priors is consistent. Moreover, we compare the behavior of the proposed multiple change-points detection procedure with existing methods through a simulation study and two real data examples. |
doi_str_mv | 10.1007/s00180-020-01054-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2524567730</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2524567730</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-e24539636dcbc88f01ad989a620c06405ec5c5ccadff96dba2e19e6adff837933</originalsourceid><addsrcrecordid>eNp9kN9LwzAQx4MoOKf_gE8Bn6uXpE2bR50_Jmzqg4pvIUuvW0fXzKRF9t-bWcE3OY7j4Hufgw8h5wwuGUB-FQBYAQnw2AyyNBEHZMQkE4mSWXFIRqBSkaQg-TE5CWENwHnO2Yh83Jgdhtq0dN43Xb1tkE5Wpl1i8uLqtgv0Fju0Xe1aWrfU0CfnN6ahc1diQ7_qbkWnMeDdElt0faDvxkeYxXBKjirTBDz7nWPydn_3Opkms-eHx8n1LLE8hy5BnmZCSSFLu7BFUQEzpSqUkRwsyBQytFksa8qqUrJcGI5ModyvhciVEGNyMXC33n32GDq9dr1v40vNswiXeS4gpviQst6F4LHSW19vjN9pBnpvUA8GdTSofwzqPVoMRyGGoxL_h_7n6hsx9XQQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2524567730</pqid></control><display><type>article</type><title>Bayesian Multiple Change-Points Detection in a Normal Model with Heterogeneous Variances</title><source>Springer Nature - Complete Springer Journals</source><creator>Kang, Sang Gil ; Lee, Woo Dong ; Kim, Yongku</creator><creatorcontrib>Kang, Sang Gil ; Lee, Woo Dong ; Kim, Yongku</creatorcontrib><description>This study considers the problem of multiple change-points detection. For this problem, we develop an objective Bayesian multiple change-points detection procedure in a normal model with heterogeneous variances. Our Bayesian procedure is based on a combination of binary segmentation and the idea of the screening and ranking algorithm (Niu and Zhang in Ann Appl Stat 6:1306–1326, 2012). Using the screening and ranking algorithm, we can overcome the drawbacks of binary segmentation, as it cannot detect a small segment of structural change in the middle of a large segment or segments of structural changes with small jump magnitude. We propose a detection procedure based on a Bayesian model selection procedure to address this problem in which no subjective input is considered. We construct intrinsic priors for which the Bayes factors and model selection probabilities are well defined. We find that for large sample sizes, our method based on Bayes factors with intrinsic priors is consistent. Moreover, we compare the behavior of the proposed multiple change-points detection procedure with existing methods through a simulation study and two real data examples.</description><identifier>ISSN: 0943-4062</identifier><identifier>EISSN: 1613-9658</identifier><identifier>DOI: 10.1007/s00180-020-01054-3</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Bayesian analysis ; Economic Theory/Quantitative Economics/Mathematical Methods ; Mathematics and Statistics ; Original Paper ; Probability and Statistics in Computer Science ; Probability Theory and Stochastic Processes ; Ranking ; Screening ; Segmentation ; Segments ; Statistics</subject><ispartof>Computational statistics, 2021-06, Vol.36 (2), p.1365-1390</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-e24539636dcbc88f01ad989a620c06405ec5c5ccadff96dba2e19e6adff837933</cites><orcidid>0000-0002-3917-6279</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00180-020-01054-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00180-020-01054-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27915,27916,41479,42548,51310</link.rule.ids></links><search><creatorcontrib>Kang, Sang Gil</creatorcontrib><creatorcontrib>Lee, Woo Dong</creatorcontrib><creatorcontrib>Kim, Yongku</creatorcontrib><title>Bayesian Multiple Change-Points Detection in a Normal Model with Heterogeneous Variances</title><title>Computational statistics</title><addtitle>Comput Stat</addtitle><description>This study considers the problem of multiple change-points detection. For this problem, we develop an objective Bayesian multiple change-points detection procedure in a normal model with heterogeneous variances. Our Bayesian procedure is based on a combination of binary segmentation and the idea of the screening and ranking algorithm (Niu and Zhang in Ann Appl Stat 6:1306–1326, 2012). Using the screening and ranking algorithm, we can overcome the drawbacks of binary segmentation, as it cannot detect a small segment of structural change in the middle of a large segment or segments of structural changes with small jump magnitude. We propose a detection procedure based on a Bayesian model selection procedure to address this problem in which no subjective input is considered. We construct intrinsic priors for which the Bayes factors and model selection probabilities are well defined. We find that for large sample sizes, our method based on Bayes factors with intrinsic priors is consistent. Moreover, we compare the behavior of the proposed multiple change-points detection procedure with existing methods through a simulation study and two real data examples.</description><subject>Algorithms</subject><subject>Bayesian analysis</subject><subject>Economic Theory/Quantitative Economics/Mathematical Methods</subject><subject>Mathematics and Statistics</subject><subject>Original Paper</subject><subject>Probability and Statistics in Computer Science</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Ranking</subject><subject>Screening</subject><subject>Segmentation</subject><subject>Segments</subject><subject>Statistics</subject><issn>0943-4062</issn><issn>1613-9658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kN9LwzAQx4MoOKf_gE8Bn6uXpE2bR50_Jmzqg4pvIUuvW0fXzKRF9t-bWcE3OY7j4Hufgw8h5wwuGUB-FQBYAQnw2AyyNBEHZMQkE4mSWXFIRqBSkaQg-TE5CWENwHnO2Yh83Jgdhtq0dN43Xb1tkE5Wpl1i8uLqtgv0Fju0Xe1aWrfU0CfnN6ahc1diQ7_qbkWnMeDdElt0faDvxkeYxXBKjirTBDz7nWPydn_3Opkms-eHx8n1LLE8hy5BnmZCSSFLu7BFUQEzpSqUkRwsyBQytFksa8qqUrJcGI5ModyvhciVEGNyMXC33n32GDq9dr1v40vNswiXeS4gpviQst6F4LHSW19vjN9pBnpvUA8GdTSofwzqPVoMRyGGoxL_h_7n6hsx9XQQ</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Kang, Sang Gil</creator><creator>Lee, Woo Dong</creator><creator>Kim, Yongku</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-3917-6279</orcidid></search><sort><creationdate>20210601</creationdate><title>Bayesian Multiple Change-Points Detection in a Normal Model with Heterogeneous Variances</title><author>Kang, Sang Gil ; Lee, Woo Dong ; Kim, Yongku</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-e24539636dcbc88f01ad989a620c06405ec5c5ccadff96dba2e19e6adff837933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Bayesian analysis</topic><topic>Economic Theory/Quantitative Economics/Mathematical Methods</topic><topic>Mathematics and Statistics</topic><topic>Original Paper</topic><topic>Probability and Statistics in Computer Science</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Ranking</topic><topic>Screening</topic><topic>Segmentation</topic><topic>Segments</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kang, Sang Gil</creatorcontrib><creatorcontrib>Lee, Woo Dong</creatorcontrib><creatorcontrib>Kim, Yongku</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Computational statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kang, Sang Gil</au><au>Lee, Woo Dong</au><au>Kim, Yongku</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bayesian Multiple Change-Points Detection in a Normal Model with Heterogeneous Variances</atitle><jtitle>Computational statistics</jtitle><stitle>Comput Stat</stitle><date>2021-06-01</date><risdate>2021</risdate><volume>36</volume><issue>2</issue><spage>1365</spage><epage>1390</epage><pages>1365-1390</pages><issn>0943-4062</issn><eissn>1613-9658</eissn><abstract>This study considers the problem of multiple change-points detection. For this problem, we develop an objective Bayesian multiple change-points detection procedure in a normal model with heterogeneous variances. Our Bayesian procedure is based on a combination of binary segmentation and the idea of the screening and ranking algorithm (Niu and Zhang in Ann Appl Stat 6:1306–1326, 2012). Using the screening and ranking algorithm, we can overcome the drawbacks of binary segmentation, as it cannot detect a small segment of structural change in the middle of a large segment or segments of structural changes with small jump magnitude. We propose a detection procedure based on a Bayesian model selection procedure to address this problem in which no subjective input is considered. We construct intrinsic priors for which the Bayes factors and model selection probabilities are well defined. We find that for large sample sizes, our method based on Bayes factors with intrinsic priors is consistent. Moreover, we compare the behavior of the proposed multiple change-points detection procedure with existing methods through a simulation study and two real data examples.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00180-020-01054-3</doi><tpages>26</tpages><orcidid>https://orcid.org/0000-0002-3917-6279</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0943-4062 |
ispartof | Computational statistics, 2021-06, Vol.36 (2), p.1365-1390 |
issn | 0943-4062 1613-9658 |
language | eng |
recordid | cdi_proquest_journals_2524567730 |
source | Springer Nature - Complete Springer Journals |
subjects | Algorithms Bayesian analysis Economic Theory/Quantitative Economics/Mathematical Methods Mathematics and Statistics Original Paper Probability and Statistics in Computer Science Probability Theory and Stochastic Processes Ranking Screening Segmentation Segments Statistics |
title | Bayesian Multiple Change-Points Detection in a Normal Model with Heterogeneous Variances |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T04%3A36%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bayesian%20Multiple%20Change-Points%20Detection%20in%20a%20Normal%20Model%20with%20Heterogeneous%20Variances&rft.jtitle=Computational%20statistics&rft.au=Kang,%20Sang%20Gil&rft.date=2021-06-01&rft.volume=36&rft.issue=2&rft.spage=1365&rft.epage=1390&rft.pages=1365-1390&rft.issn=0943-4062&rft.eissn=1613-9658&rft_id=info:doi/10.1007/s00180-020-01054-3&rft_dat=%3Cproquest_cross%3E2524567730%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2524567730&rft_id=info:pmid/&rfr_iscdi=true |