Autoencoder Based Inter-Vehicle Generalization for In-Cabin Occupant Classification
Common domain shift problem formulations consider the integration of multiple source domains, or the target domain during training. Regarding the generalization of machine learning models between different car interiors, we formulate the criterion of training in a single vehicle: without access to t...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2021-05 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Dias Da Cruz, Steve Taetz, Bertram Wasenmüller, Oliver Stifter, Thomas Stricker, Didier |
description | Common domain shift problem formulations consider the integration of multiple source domains, or the target domain during training. Regarding the generalization of machine learning models between different car interiors, we formulate the criterion of training in a single vehicle: without access to the target distribution of the vehicle the model would be deployed to, neither with access to multiple vehicles during training. We performed an investigation on the SVIRO dataset for occupant classification on the rear bench and propose an autoencoder based approach to improve the transferability. The autoencoder is on par with commonly used classification models when trained from scratch and sometimes out-performs models pre-trained on a large amount of data. Moreover, the autoencoder can transform images from unknown vehicles into the vehicle it was trained on. These results are corroborated by an evaluation on real infrared images from two vehicle interiors. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2524564612</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2524564612</sourcerecordid><originalsourceid>FETCH-proquest_journals_25245646123</originalsourceid><addsrcrecordid>eNqNyrsKwjAUgOEgCBbtOwScA_Wkqa5avE0OimuJ6SmmhKTmsvj0FvEBnP7h_yYkA85XbFMCzEgeQl8UBVRrEIJn5LpN0aFVrkVPdzJgS882omd3fGplkB7RopdGv2XUztLO-RGwWj60pRel0iBtpLWRIehOqy9akGknTcD81zlZHva3-sQG714JQ2x6l7wdVwMCSlGV1Qr4f-oDIkk_9g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2524564612</pqid></control><display><type>article</type><title>Autoencoder Based Inter-Vehicle Generalization for In-Cabin Occupant Classification</title><source>Free E- Journals</source><creator>Dias Da Cruz, Steve ; Taetz, Bertram ; Wasenmüller, Oliver ; Stifter, Thomas ; Stricker, Didier</creator><creatorcontrib>Dias Da Cruz, Steve ; Taetz, Bertram ; Wasenmüller, Oliver ; Stifter, Thomas ; Stricker, Didier</creatorcontrib><description>Common domain shift problem formulations consider the integration of multiple source domains, or the target domain during training. Regarding the generalization of machine learning models between different car interiors, we formulate the criterion of training in a single vehicle: without access to the target distribution of the vehicle the model would be deployed to, neither with access to multiple vehicles during training. We performed an investigation on the SVIRO dataset for occupant classification on the rear bench and propose an autoencoder based approach to improve the transferability. The autoencoder is on par with commonly used classification models when trained from scratch and sometimes out-performs models pre-trained on a large amount of data. Moreover, the autoencoder can transform images from unknown vehicles into the vehicle it was trained on. These results are corroborated by an evaluation on real infrared images from two vehicle interiors.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Classification ; Domains ; Infrared imagery ; Machine learning ; Training ; Vehicles</subject><ispartof>arXiv.org, 2021-05</ispartof><rights>2021. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Dias Da Cruz, Steve</creatorcontrib><creatorcontrib>Taetz, Bertram</creatorcontrib><creatorcontrib>Wasenmüller, Oliver</creatorcontrib><creatorcontrib>Stifter, Thomas</creatorcontrib><creatorcontrib>Stricker, Didier</creatorcontrib><title>Autoencoder Based Inter-Vehicle Generalization for In-Cabin Occupant Classification</title><title>arXiv.org</title><description>Common domain shift problem formulations consider the integration of multiple source domains, or the target domain during training. Regarding the generalization of machine learning models between different car interiors, we formulate the criterion of training in a single vehicle: without access to the target distribution of the vehicle the model would be deployed to, neither with access to multiple vehicles during training. We performed an investigation on the SVIRO dataset for occupant classification on the rear bench and propose an autoencoder based approach to improve the transferability. The autoencoder is on par with commonly used classification models when trained from scratch and sometimes out-performs models pre-trained on a large amount of data. Moreover, the autoencoder can transform images from unknown vehicles into the vehicle it was trained on. These results are corroborated by an evaluation on real infrared images from two vehicle interiors.</description><subject>Classification</subject><subject>Domains</subject><subject>Infrared imagery</subject><subject>Machine learning</subject><subject>Training</subject><subject>Vehicles</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNyrsKwjAUgOEgCBbtOwScA_Wkqa5avE0OimuJ6SmmhKTmsvj0FvEBnP7h_yYkA85XbFMCzEgeQl8UBVRrEIJn5LpN0aFVrkVPdzJgS882omd3fGplkB7RopdGv2XUztLO-RGwWj60pRel0iBtpLWRIehOqy9akGknTcD81zlZHva3-sQG714JQ2x6l7wdVwMCSlGV1Qr4f-oDIkk_9g</recordid><startdate>20210507</startdate><enddate>20210507</enddate><creator>Dias Da Cruz, Steve</creator><creator>Taetz, Bertram</creator><creator>Wasenmüller, Oliver</creator><creator>Stifter, Thomas</creator><creator>Stricker, Didier</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20210507</creationdate><title>Autoencoder Based Inter-Vehicle Generalization for In-Cabin Occupant Classification</title><author>Dias Da Cruz, Steve ; Taetz, Bertram ; Wasenmüller, Oliver ; Stifter, Thomas ; Stricker, Didier</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_25245646123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Classification</topic><topic>Domains</topic><topic>Infrared imagery</topic><topic>Machine learning</topic><topic>Training</topic><topic>Vehicles</topic><toplevel>online_resources</toplevel><creatorcontrib>Dias Da Cruz, Steve</creatorcontrib><creatorcontrib>Taetz, Bertram</creatorcontrib><creatorcontrib>Wasenmüller, Oliver</creatorcontrib><creatorcontrib>Stifter, Thomas</creatorcontrib><creatorcontrib>Stricker, Didier</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dias Da Cruz, Steve</au><au>Taetz, Bertram</au><au>Wasenmüller, Oliver</au><au>Stifter, Thomas</au><au>Stricker, Didier</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Autoencoder Based Inter-Vehicle Generalization for In-Cabin Occupant Classification</atitle><jtitle>arXiv.org</jtitle><date>2021-05-07</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>Common domain shift problem formulations consider the integration of multiple source domains, or the target domain during training. Regarding the generalization of machine learning models between different car interiors, we formulate the criterion of training in a single vehicle: without access to the target distribution of the vehicle the model would be deployed to, neither with access to multiple vehicles during training. We performed an investigation on the SVIRO dataset for occupant classification on the rear bench and propose an autoencoder based approach to improve the transferability. The autoencoder is on par with commonly used classification models when trained from scratch and sometimes out-performs models pre-trained on a large amount of data. Moreover, the autoencoder can transform images from unknown vehicles into the vehicle it was trained on. These results are corroborated by an evaluation on real infrared images from two vehicle interiors.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2021-05 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2524564612 |
source | Free E- Journals |
subjects | Classification Domains Infrared imagery Machine learning Training Vehicles |
title | Autoencoder Based Inter-Vehicle Generalization for In-Cabin Occupant Classification |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T10%3A54%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Autoencoder%20Based%20Inter-Vehicle%20Generalization%20for%20In-Cabin%20Occupant%20Classification&rft.jtitle=arXiv.org&rft.au=Dias%20Da%20Cruz,%20Steve&rft.date=2021-05-07&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2524564612%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2524564612&rft_id=info:pmid/&rfr_iscdi=true |