A State-of-the-art Survey of Object Detection Techniques in Microorganism Image Analysis: From Classical Methods to Deep Learning Approaches

Microorganisms play a vital role in human life. Therefore, microorganism detection is of great significance to human beings. However, the traditional manual microscopic detection methods have the disadvantages of long detection cycle, low detection accuracy in large orders, and great difficulty in d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2022-04
Hauptverfasser: Ma, Pingli, Chen, Li, Rahaman, Md Mamunur, Yao, Yudong, Zhang, Jiawei, Zou, Shuojia, Zhao, Xin, Grzegorzek, Marcin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Ma, Pingli
Chen, Li
Rahaman, Md Mamunur
Yao, Yudong
Zhang, Jiawei
Zou, Shuojia
Zhao, Xin
Grzegorzek, Marcin
description Microorganisms play a vital role in human life. Therefore, microorganism detection is of great significance to human beings. However, the traditional manual microscopic detection methods have the disadvantages of long detection cycle, low detection accuracy in large orders, and great difficulty in detecting uncommon microorganisms. Therefore, it is meaningful to apply computer image analysis technology to the field of microorganism detection. Computer image analysis can realize high-precision and high-efficiency detection of microorganisms. In this review, first,we analyse the existing microorganism detection methods in chronological order, from traditional image processing and traditional machine learning to deep learning methods. Then, we analyze and summarize these existing methods and introduce some potential methods, including visual transformers. In the end, the future development direction and challenges of microorganism detection are discussed. In general, we have summarized 142 related technical papers from 1985 to the present. This review will help researchers have a more comprehensive understanding of the development process, research status, and future trends in the field of microorganism detection and provide a reference for researchers in other fields.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2524563164</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2524563164</sourcerecordid><originalsourceid>FETCH-proquest_journals_25245631643</originalsourceid><addsrcrecordid>eNqNjcFKw0AQQJeCYNH-w0DPC-luEsVbaC0KFg_tvYzrJNmQ7KQ7G6H_4EcbwQ_w9C6P9xZqaazd6MfcmFu1EumyLDPlgykKu1TfFRwTJtJc69SSxpjgOMUvugLX8P7RkUuwozTDc4ATuTb4y0QCPsDBu8gcGwxeBngdsCGoAvZX8fIE-8gDbHsU8Q57OFBq-VMg8dyjEd4IY_ChgWocI6NrSe7VTY290OqPd2q9fz5tX_Qs_D7TueMpzgM5m8LkRWk3ZW7_Z_0AoHtUNQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2524563164</pqid></control><display><type>article</type><title>A State-of-the-art Survey of Object Detection Techniques in Microorganism Image Analysis: From Classical Methods to Deep Learning Approaches</title><source>Free E- Journals</source><creator>Ma, Pingli ; Chen, Li ; Rahaman, Md Mamunur ; Yao, Yudong ; Zhang, Jiawei ; Zou, Shuojia ; Zhao, Xin ; Grzegorzek, Marcin</creator><creatorcontrib>Ma, Pingli ; Chen, Li ; Rahaman, Md Mamunur ; Yao, Yudong ; Zhang, Jiawei ; Zou, Shuojia ; Zhao, Xin ; Grzegorzek, Marcin</creatorcontrib><description>Microorganisms play a vital role in human life. Therefore, microorganism detection is of great significance to human beings. However, the traditional manual microscopic detection methods have the disadvantages of long detection cycle, low detection accuracy in large orders, and great difficulty in detecting uncommon microorganisms. Therefore, it is meaningful to apply computer image analysis technology to the field of microorganism detection. Computer image analysis can realize high-precision and high-efficiency detection of microorganisms. In this review, first,we analyse the existing microorganism detection methods in chronological order, from traditional image processing and traditional machine learning to deep learning methods. Then, we analyze and summarize these existing methods and introduce some potential methods, including visual transformers. In the end, the future development direction and challenges of microorganism detection are discussed. In general, we have summarized 142 related technical papers from 1985 to the present. This review will help researchers have a more comprehensive understanding of the development process, research status, and future trends in the field of microorganism detection and provide a reference for researchers in other fields.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Artificial neural networks ; Image analysis ; Image processing ; Machine learning ; Microorganisms ; Object recognition ; Technical papers ; Technology assessment ; Transformers</subject><ispartof>arXiv.org, 2022-04</ispartof><rights>2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Ma, Pingli</creatorcontrib><creatorcontrib>Chen, Li</creatorcontrib><creatorcontrib>Rahaman, Md Mamunur</creatorcontrib><creatorcontrib>Yao, Yudong</creatorcontrib><creatorcontrib>Zhang, Jiawei</creatorcontrib><creatorcontrib>Zou, Shuojia</creatorcontrib><creatorcontrib>Zhao, Xin</creatorcontrib><creatorcontrib>Grzegorzek, Marcin</creatorcontrib><title>A State-of-the-art Survey of Object Detection Techniques in Microorganism Image Analysis: From Classical Methods to Deep Learning Approaches</title><title>arXiv.org</title><description>Microorganisms play a vital role in human life. Therefore, microorganism detection is of great significance to human beings. However, the traditional manual microscopic detection methods have the disadvantages of long detection cycle, low detection accuracy in large orders, and great difficulty in detecting uncommon microorganisms. Therefore, it is meaningful to apply computer image analysis technology to the field of microorganism detection. Computer image analysis can realize high-precision and high-efficiency detection of microorganisms. In this review, first,we analyse the existing microorganism detection methods in chronological order, from traditional image processing and traditional machine learning to deep learning methods. Then, we analyze and summarize these existing methods and introduce some potential methods, including visual transformers. In the end, the future development direction and challenges of microorganism detection are discussed. In general, we have summarized 142 related technical papers from 1985 to the present. This review will help researchers have a more comprehensive understanding of the development process, research status, and future trends in the field of microorganism detection and provide a reference for researchers in other fields.</description><subject>Artificial neural networks</subject><subject>Image analysis</subject><subject>Image processing</subject><subject>Machine learning</subject><subject>Microorganisms</subject><subject>Object recognition</subject><subject>Technical papers</subject><subject>Technology assessment</subject><subject>Transformers</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNjcFKw0AQQJeCYNH-w0DPC-luEsVbaC0KFg_tvYzrJNmQ7KQ7G6H_4EcbwQ_w9C6P9xZqaazd6MfcmFu1EumyLDPlgykKu1TfFRwTJtJc69SSxpjgOMUvugLX8P7RkUuwozTDc4ATuTb4y0QCPsDBu8gcGwxeBngdsCGoAvZX8fIE-8gDbHsU8Q57OFBq-VMg8dyjEd4IY_ChgWocI6NrSe7VTY290OqPd2q9fz5tX_Qs_D7TueMpzgM5m8LkRWk3ZW7_Z_0AoHtUNQ</recordid><startdate>20220411</startdate><enddate>20220411</enddate><creator>Ma, Pingli</creator><creator>Chen, Li</creator><creator>Rahaman, Md Mamunur</creator><creator>Yao, Yudong</creator><creator>Zhang, Jiawei</creator><creator>Zou, Shuojia</creator><creator>Zhao, Xin</creator><creator>Grzegorzek, Marcin</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220411</creationdate><title>A State-of-the-art Survey of Object Detection Techniques in Microorganism Image Analysis: From Classical Methods to Deep Learning Approaches</title><author>Ma, Pingli ; Chen, Li ; Rahaman, Md Mamunur ; Yao, Yudong ; Zhang, Jiawei ; Zou, Shuojia ; Zhao, Xin ; Grzegorzek, Marcin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_25245631643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial neural networks</topic><topic>Image analysis</topic><topic>Image processing</topic><topic>Machine learning</topic><topic>Microorganisms</topic><topic>Object recognition</topic><topic>Technical papers</topic><topic>Technology assessment</topic><topic>Transformers</topic><toplevel>online_resources</toplevel><creatorcontrib>Ma, Pingli</creatorcontrib><creatorcontrib>Chen, Li</creatorcontrib><creatorcontrib>Rahaman, Md Mamunur</creatorcontrib><creatorcontrib>Yao, Yudong</creatorcontrib><creatorcontrib>Zhang, Jiawei</creatorcontrib><creatorcontrib>Zou, Shuojia</creatorcontrib><creatorcontrib>Zhao, Xin</creatorcontrib><creatorcontrib>Grzegorzek, Marcin</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ma, Pingli</au><au>Chen, Li</au><au>Rahaman, Md Mamunur</au><au>Yao, Yudong</au><au>Zhang, Jiawei</au><au>Zou, Shuojia</au><au>Zhao, Xin</au><au>Grzegorzek, Marcin</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>A State-of-the-art Survey of Object Detection Techniques in Microorganism Image Analysis: From Classical Methods to Deep Learning Approaches</atitle><jtitle>arXiv.org</jtitle><date>2022-04-11</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>Microorganisms play a vital role in human life. Therefore, microorganism detection is of great significance to human beings. However, the traditional manual microscopic detection methods have the disadvantages of long detection cycle, low detection accuracy in large orders, and great difficulty in detecting uncommon microorganisms. Therefore, it is meaningful to apply computer image analysis technology to the field of microorganism detection. Computer image analysis can realize high-precision and high-efficiency detection of microorganisms. In this review, first,we analyse the existing microorganism detection methods in chronological order, from traditional image processing and traditional machine learning to deep learning methods. Then, we analyze and summarize these existing methods and introduce some potential methods, including visual transformers. In the end, the future development direction and challenges of microorganism detection are discussed. In general, we have summarized 142 related technical papers from 1985 to the present. This review will help researchers have a more comprehensive understanding of the development process, research status, and future trends in the field of microorganism detection and provide a reference for researchers in other fields.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2022-04
issn 2331-8422
language eng
recordid cdi_proquest_journals_2524563164
source Free E- Journals
subjects Artificial neural networks
Image analysis
Image processing
Machine learning
Microorganisms
Object recognition
Technical papers
Technology assessment
Transformers
title A State-of-the-art Survey of Object Detection Techniques in Microorganism Image Analysis: From Classical Methods to Deep Learning Approaches
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T00%3A58%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=A%20State-of-the-art%20Survey%20of%20Object%20Detection%20Techniques%20in%20Microorganism%20Image%20Analysis:%20From%20Classical%20Methods%20to%20Deep%20Learning%20Approaches&rft.jtitle=arXiv.org&rft.au=Ma,%20Pingli&rft.date=2022-04-11&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2524563164%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2524563164&rft_id=info:pmid/&rfr_iscdi=true