Distributed-Order Non-Local Optimal Control

Distributed-order fractional non-local operators were introduced and studied by Caputo at the end of the 20th century. They generalize fractional order derivatives/integrals in the sense that such operators are defined by a weighted integral of different orders of differentiation over a certain rang...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Axioms 2020-12, Vol.9 (4), p.124
Hauptverfasser: Ndaïrou, Faïçal, Torres, Delfim F. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page 124
container_title Axioms
container_volume 9
creator Ndaïrou, Faïçal
Torres, Delfim F. M.
description Distributed-order fractional non-local operators were introduced and studied by Caputo at the end of the 20th century. They generalize fractional order derivatives/integrals in the sense that such operators are defined by a weighted integral of different orders of differentiation over a certain range. The subject of distributed-order non-local derivatives is currently under strong development due to its applications in modeling some complex real world phenomena. Fractional optimal control theory deals with the optimization of a performance index functional, subject to a fractional control system. One of the most important results in classical and fractional optimal control is the Pontryagin Maximum Principle, which gives a necessary optimality condition that every solution to the optimization problem must verify. In our work, we extend the fractional optimal control theory by considering dynamical system constraints depending on distributed-order fractional derivatives. Precisely, we prove a weak version of Pontryagin’s maximum principle and a sufficient optimality condition under appropriate convexity assumptions.
doi_str_mv 10.3390/axioms9040124
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2524502413</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2524502413</sourcerecordid><originalsourceid>FETCH-LOGICAL-c330t-bdaec4e71f1ba1b4f36d48c17517d4acf9b70ce9a5531ff48ef77d85dc59f2fb3</originalsourceid><addsrcrecordid>eNpVUEtLxDAYDKLgsu7R-4JHiebLY9MepT6h2IueQ57QpdvUJAX991bWg85l5jDMDIPQJZAbxmpyqz_7eMg14QQoP0ErSqTAsKvI6R99jjY578mCGlgFbIWu7_tcUm_m4h3ukvNp-xpH3Earh203lf6wcBPHkuJwgc6CHrLf_PIavT8-vDXPuO2eXpq7FlvGSMHGaW-5lxDAaDA8sJ3jlQUpQDqubaiNJNbXWggGIfDKByldJZwVdaDBsDW6OuZOKX7MPhe1j3Mal0pFBeWCUA5sceGjy6aYc_JBTWlZm74UEPVzifp3CfsGx_xUlQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2524502413</pqid></control><display><type>article</type><title>Distributed-Order Non-Local Optimal Control</title><source>DOAJ Directory of Open Access Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Ndaïrou, Faïçal ; Torres, Delfim F. M.</creator><creatorcontrib>Ndaïrou, Faïçal ; Torres, Delfim F. M.</creatorcontrib><description>Distributed-order fractional non-local operators were introduced and studied by Caputo at the end of the 20th century. They generalize fractional order derivatives/integrals in the sense that such operators are defined by a weighted integral of different orders of differentiation over a certain range. The subject of distributed-order non-local derivatives is currently under strong development due to its applications in modeling some complex real world phenomena. Fractional optimal control theory deals with the optimization of a performance index functional, subject to a fractional control system. One of the most important results in classical and fractional optimal control is the Pontryagin Maximum Principle, which gives a necessary optimality condition that every solution to the optimization problem must verify. In our work, we extend the fractional optimal control theory by considering dynamical system constraints depending on distributed-order fractional derivatives. Precisely, we prove a weak version of Pontryagin’s maximum principle and a sufficient optimality condition under appropriate convexity assumptions.</description><identifier>ISSN: 2075-1680</identifier><identifier>EISSN: 2075-1680</identifier><identifier>DOI: 10.3390/axioms9040124</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Control systems ; Control theory ; Convexity ; Derivatives ; Indexing ; Inequality ; Integrals ; Mathematical functions ; Maximum principle ; Operators (mathematics) ; Optimal control ; Optimization ; Performance indices</subject><ispartof>Axioms, 2020-12, Vol.9 (4), p.124</ispartof><rights>2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c330t-bdaec4e71f1ba1b4f36d48c17517d4acf9b70ce9a5531ff48ef77d85dc59f2fb3</citedby><cites>FETCH-LOGICAL-c330t-bdaec4e71f1ba1b4f36d48c17517d4acf9b70ce9a5531ff48ef77d85dc59f2fb3</cites><orcidid>0000-0001-8641-2505 ; 0000-0002-0119-6178</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,27923,27924</link.rule.ids></links><search><creatorcontrib>Ndaïrou, Faïçal</creatorcontrib><creatorcontrib>Torres, Delfim F. M.</creatorcontrib><title>Distributed-Order Non-Local Optimal Control</title><title>Axioms</title><description>Distributed-order fractional non-local operators were introduced and studied by Caputo at the end of the 20th century. They generalize fractional order derivatives/integrals in the sense that such operators are defined by a weighted integral of different orders of differentiation over a certain range. The subject of distributed-order non-local derivatives is currently under strong development due to its applications in modeling some complex real world phenomena. Fractional optimal control theory deals with the optimization of a performance index functional, subject to a fractional control system. One of the most important results in classical and fractional optimal control is the Pontryagin Maximum Principle, which gives a necessary optimality condition that every solution to the optimization problem must verify. In our work, we extend the fractional optimal control theory by considering dynamical system constraints depending on distributed-order fractional derivatives. Precisely, we prove a weak version of Pontryagin’s maximum principle and a sufficient optimality condition under appropriate convexity assumptions.</description><subject>Control systems</subject><subject>Control theory</subject><subject>Convexity</subject><subject>Derivatives</subject><subject>Indexing</subject><subject>Inequality</subject><subject>Integrals</subject><subject>Mathematical functions</subject><subject>Maximum principle</subject><subject>Operators (mathematics)</subject><subject>Optimal control</subject><subject>Optimization</subject><subject>Performance indices</subject><issn>2075-1680</issn><issn>2075-1680</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpVUEtLxDAYDKLgsu7R-4JHiebLY9MepT6h2IueQ57QpdvUJAX991bWg85l5jDMDIPQJZAbxmpyqz_7eMg14QQoP0ErSqTAsKvI6R99jjY578mCGlgFbIWu7_tcUm_m4h3ukvNp-xpH3Earh203lf6wcBPHkuJwgc6CHrLf_PIavT8-vDXPuO2eXpq7FlvGSMHGaW-5lxDAaDA8sJ3jlQUpQDqubaiNJNbXWggGIfDKByldJZwVdaDBsDW6OuZOKX7MPhe1j3Mal0pFBeWCUA5sceGjy6aYc_JBTWlZm74UEPVzifp3CfsGx_xUlQ</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Ndaïrou, Faïçal</creator><creator>Torres, Delfim F. M.</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0001-8641-2505</orcidid><orcidid>https://orcid.org/0000-0002-0119-6178</orcidid></search><sort><creationdate>20201201</creationdate><title>Distributed-Order Non-Local Optimal Control</title><author>Ndaïrou, Faïçal ; Torres, Delfim F. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c330t-bdaec4e71f1ba1b4f36d48c17517d4acf9b70ce9a5531ff48ef77d85dc59f2fb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Control systems</topic><topic>Control theory</topic><topic>Convexity</topic><topic>Derivatives</topic><topic>Indexing</topic><topic>Inequality</topic><topic>Integrals</topic><topic>Mathematical functions</topic><topic>Maximum principle</topic><topic>Operators (mathematics)</topic><topic>Optimal control</topic><topic>Optimization</topic><topic>Performance indices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ndaïrou, Faïçal</creatorcontrib><creatorcontrib>Torres, Delfim F. M.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Axioms</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ndaïrou, Faïçal</au><au>Torres, Delfim F. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Distributed-Order Non-Local Optimal Control</atitle><jtitle>Axioms</jtitle><date>2020-12-01</date><risdate>2020</risdate><volume>9</volume><issue>4</issue><spage>124</spage><pages>124-</pages><issn>2075-1680</issn><eissn>2075-1680</eissn><abstract>Distributed-order fractional non-local operators were introduced and studied by Caputo at the end of the 20th century. They generalize fractional order derivatives/integrals in the sense that such operators are defined by a weighted integral of different orders of differentiation over a certain range. The subject of distributed-order non-local derivatives is currently under strong development due to its applications in modeling some complex real world phenomena. Fractional optimal control theory deals with the optimization of a performance index functional, subject to a fractional control system. One of the most important results in classical and fractional optimal control is the Pontryagin Maximum Principle, which gives a necessary optimality condition that every solution to the optimization problem must verify. In our work, we extend the fractional optimal control theory by considering dynamical system constraints depending on distributed-order fractional derivatives. Precisely, we prove a weak version of Pontryagin’s maximum principle and a sufficient optimality condition under appropriate convexity assumptions.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/axioms9040124</doi><orcidid>https://orcid.org/0000-0001-8641-2505</orcidid><orcidid>https://orcid.org/0000-0002-0119-6178</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2075-1680
ispartof Axioms, 2020-12, Vol.9 (4), p.124
issn 2075-1680
2075-1680
language eng
recordid cdi_proquest_journals_2524502413
source DOAJ Directory of Open Access Journals; MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals
subjects Control systems
Control theory
Convexity
Derivatives
Indexing
Inequality
Integrals
Mathematical functions
Maximum principle
Operators (mathematics)
Optimal control
Optimization
Performance indices
title Distributed-Order Non-Local Optimal Control
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T12%3A15%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Distributed-Order%20Non-Local%20Optimal%20Control&rft.jtitle=Axioms&rft.au=Nda%C3%AFrou,%20Fa%C3%AF%C3%A7al&rft.date=2020-12-01&rft.volume=9&rft.issue=4&rft.spage=124&rft.pages=124-&rft.issn=2075-1680&rft.eissn=2075-1680&rft_id=info:doi/10.3390/axioms9040124&rft_dat=%3Cproquest_cross%3E2524502413%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2524502413&rft_id=info:pmid/&rfr_iscdi=true