Investigation of the thermal stability and fire behavior of high performance polymer: A case study of polyimide
This article reports the thermal and fire behaviors of a high performance polymer, namely polyimide (PI). These behaviors were investigated using different techniques and tests, i.e., pyrolysis-Gas-Chromatography/Mass-Spectrometry (py-GC/MS) and TGA coupled with a Fourier Transform InfraRed spectrom...
Gespeichert in:
Veröffentlicht in: | Fire Safety Journal 2021-03, Vol.120, p.103060, Article 103060 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 103060 |
container_title | Fire Safety Journal |
container_volume | 120 |
creator | Ramgobin, Aditya Fontaine, Gaëlle Bourbigot, Serge |
description | This article reports the thermal and fire behaviors of a high performance polymer, namely polyimide (PI). These behaviors were investigated using different techniques and tests, i.e., pyrolysis-Gas-Chromatography/Mass-Spectrometry (py-GC/MS) and TGA coupled with a Fourier Transform InfraRed spectrometer (TGA-FTIR), and mass loss cone (MLC) at different heat fluxes. It was observed that the thermal stability of PI strongly depends on the oxygen concentration. The main identified gases released during thermal degradation are: carbon dioxide, carbon monoxide, water and organic compounds (phenol, aniline, cyanobenzene, dicyanobenzene, 4-aminophenol, benzene, 2-(4-hydroxyphenyl)isoindoline-1,3-dione, phthalimide, dibenzofuran, and diphenylether). The ignition of PI in MLC experiment is observed under an external heat flux of 60 kW/m2. In that case, the peak of heat released by polyimide is only 30 kW/m2. Based on these investigations, a possible decomposition pathway of PI is proposed.
•Polyimide thermal stability is oxygen dependent.•Polyimide ignites at a heat flux superior or equal to 60 kW/m2.•At 60 kW/m2 the peak of heat released by polyimide is only 30 kW/m2.•Polyimide degradation reactions is proposed. |
doi_str_mv | 10.1016/j.firesaf.2020.103060 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_proquest_journals_2524410617</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0379711220301065</els_id><sourcerecordid>2524410617</sourcerecordid><originalsourceid>FETCH-LOGICAL-c418t-a972679c7e9857531bcb0828333d06d279d47ae8c85c806227c03964d30110273</originalsourceid><addsrcrecordid>eNqFkU9LAzEQxYMoWKsfQQh48rB1kuwmu16kiP-g4EXPIU2ybsp2U5Ntod_ehBWvHkJg5vdeMvMQuiawIED43WbRumCjahcUaK4x4HCCZqQWrBCU8lM0AyaaQhBCz9FFjBsAIgCaGfJvw8HG0X2p0fkB-xaPnc0nbFWP46jWrnfjEavB4PwKXttOHZwPGe3cV4d3NrQ-0YO2eOf749aGe7zEWkWb9HtzzGRuuK0z9hKdtaqP9ur3nqPP56ePx9di9f7y9rhcFbok9VioRlAuGi1sU1eiYmSt11DTmjFmgBsqGlMKZWtdV7oGTqnQwBpeGgaEABVsjm4n3071chfcVoWj9MrJ1-VK5hrQhvKSlAeS2JuJ3QX_vU_bkBu_D0P6nqQVLUsCnGTHaqJ08DEG2_7ZEpA5B7mRvznInIOccki6h0ln07gHZ4OM2tm0LZNgPUrj3T8OPzX3kdU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2524410617</pqid></control><display><type>article</type><title>Investigation of the thermal stability and fire behavior of high performance polymer: A case study of polyimide</title><source>Elsevier ScienceDirect Journals</source><creator>Ramgobin, Aditya ; Fontaine, Gaëlle ; Bourbigot, Serge</creator><creatorcontrib>Ramgobin, Aditya ; Fontaine, Gaëlle ; Bourbigot, Serge</creatorcontrib><description>This article reports the thermal and fire behaviors of a high performance polymer, namely polyimide (PI). These behaviors were investigated using different techniques and tests, i.e., pyrolysis-Gas-Chromatography/Mass-Spectrometry (py-GC/MS) and TGA coupled with a Fourier Transform InfraRed spectrometer (TGA-FTIR), and mass loss cone (MLC) at different heat fluxes. It was observed that the thermal stability of PI strongly depends on the oxygen concentration. The main identified gases released during thermal degradation are: carbon dioxide, carbon monoxide, water and organic compounds (phenol, aniline, cyanobenzene, dicyanobenzene, 4-aminophenol, benzene, 2-(4-hydroxyphenyl)isoindoline-1,3-dione, phthalimide, dibenzofuran, and diphenylether). The ignition of PI in MLC experiment is observed under an external heat flux of 60 kW/m2. In that case, the peak of heat released by polyimide is only 30 kW/m2. Based on these investigations, a possible decomposition pathway of PI is proposed.
•Polyimide thermal stability is oxygen dependent.•Polyimide ignites at a heat flux superior or equal to 60 kW/m2.•At 60 kW/m2 the peak of heat released by polyimide is only 30 kW/m2.•Polyimide degradation reactions is proposed.</description><identifier>ISSN: 0379-7112</identifier><identifier>EISSN: 1873-7226</identifier><identifier>DOI: 10.1016/j.firesaf.2020.103060</identifier><language>eng</language><publisher>Lausanne: Elsevier Ltd</publisher><subject>Aminophenol ; Aniline ; Benzene ; Carbon dioxide ; Carbon monoxide ; Chemical Sciences ; Decomposition pathway ; Dibenzofuran ; Diketones ; Fire reaction ; Fire resistance ; Fourier transforms ; FTIR spectrometers ; Gas chromatography ; Heat ; Heat flux ; Heat transfer ; High-performance polymer ; Infrared spectrometers ; Material chemistry ; Organic compounds ; Phenols ; Phthalimide ; Polyimide ; Polyimide resins ; Polymers ; Pyrolysis ; Spectrometry ; Thermal degradation ; Thermal stability</subject><ispartof>Fire Safety Journal, 2021-03, Vol.120, p.103060, Article 103060</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright Elsevier BV Mar 2021</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c418t-a972679c7e9857531bcb0828333d06d279d47ae8c85c806227c03964d30110273</citedby><cites>FETCH-LOGICAL-c418t-a972679c7e9857531bcb0828333d06d279d47ae8c85c806227c03964d30110273</cites><orcidid>0000-0002-7113-1687</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0379711220301065$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,309,310,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://hal.univ-lille.fr/hal-02926414$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Ramgobin, Aditya</creatorcontrib><creatorcontrib>Fontaine, Gaëlle</creatorcontrib><creatorcontrib>Bourbigot, Serge</creatorcontrib><title>Investigation of the thermal stability and fire behavior of high performance polymer: A case study of polyimide</title><title>Fire Safety Journal</title><description>This article reports the thermal and fire behaviors of a high performance polymer, namely polyimide (PI). These behaviors were investigated using different techniques and tests, i.e., pyrolysis-Gas-Chromatography/Mass-Spectrometry (py-GC/MS) and TGA coupled with a Fourier Transform InfraRed spectrometer (TGA-FTIR), and mass loss cone (MLC) at different heat fluxes. It was observed that the thermal stability of PI strongly depends on the oxygen concentration. The main identified gases released during thermal degradation are: carbon dioxide, carbon monoxide, water and organic compounds (phenol, aniline, cyanobenzene, dicyanobenzene, 4-aminophenol, benzene, 2-(4-hydroxyphenyl)isoindoline-1,3-dione, phthalimide, dibenzofuran, and diphenylether). The ignition of PI in MLC experiment is observed under an external heat flux of 60 kW/m2. In that case, the peak of heat released by polyimide is only 30 kW/m2. Based on these investigations, a possible decomposition pathway of PI is proposed.
•Polyimide thermal stability is oxygen dependent.•Polyimide ignites at a heat flux superior or equal to 60 kW/m2.•At 60 kW/m2 the peak of heat released by polyimide is only 30 kW/m2.•Polyimide degradation reactions is proposed.</description><subject>Aminophenol</subject><subject>Aniline</subject><subject>Benzene</subject><subject>Carbon dioxide</subject><subject>Carbon monoxide</subject><subject>Chemical Sciences</subject><subject>Decomposition pathway</subject><subject>Dibenzofuran</subject><subject>Diketones</subject><subject>Fire reaction</subject><subject>Fire resistance</subject><subject>Fourier transforms</subject><subject>FTIR spectrometers</subject><subject>Gas chromatography</subject><subject>Heat</subject><subject>Heat flux</subject><subject>Heat transfer</subject><subject>High-performance polymer</subject><subject>Infrared spectrometers</subject><subject>Material chemistry</subject><subject>Organic compounds</subject><subject>Phenols</subject><subject>Phthalimide</subject><subject>Polyimide</subject><subject>Polyimide resins</subject><subject>Polymers</subject><subject>Pyrolysis</subject><subject>Spectrometry</subject><subject>Thermal degradation</subject><subject>Thermal stability</subject><issn>0379-7112</issn><issn>1873-7226</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkU9LAzEQxYMoWKsfQQh48rB1kuwmu16kiP-g4EXPIU2ybsp2U5Ntod_ehBWvHkJg5vdeMvMQuiawIED43WbRumCjahcUaK4x4HCCZqQWrBCU8lM0AyaaQhBCz9FFjBsAIgCaGfJvw8HG0X2p0fkB-xaPnc0nbFWP46jWrnfjEavB4PwKXttOHZwPGe3cV4d3NrQ-0YO2eOf749aGe7zEWkWb9HtzzGRuuK0z9hKdtaqP9ur3nqPP56ePx9di9f7y9rhcFbok9VioRlAuGi1sU1eiYmSt11DTmjFmgBsqGlMKZWtdV7oGTqnQwBpeGgaEABVsjm4n3071chfcVoWj9MrJ1-VK5hrQhvKSlAeS2JuJ3QX_vU_bkBu_D0P6nqQVLUsCnGTHaqJ08DEG2_7ZEpA5B7mRvznInIOccki6h0ln07gHZ4OM2tm0LZNgPUrj3T8OPzX3kdU</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Ramgobin, Aditya</creator><creator>Fontaine, Gaëlle</creator><creator>Bourbigot, Serge</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7T2</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>KR7</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-7113-1687</orcidid></search><sort><creationdate>20210301</creationdate><title>Investigation of the thermal stability and fire behavior of high performance polymer: A case study of polyimide</title><author>Ramgobin, Aditya ; Fontaine, Gaëlle ; Bourbigot, Serge</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c418t-a972679c7e9857531bcb0828333d06d279d47ae8c85c806227c03964d30110273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aminophenol</topic><topic>Aniline</topic><topic>Benzene</topic><topic>Carbon dioxide</topic><topic>Carbon monoxide</topic><topic>Chemical Sciences</topic><topic>Decomposition pathway</topic><topic>Dibenzofuran</topic><topic>Diketones</topic><topic>Fire reaction</topic><topic>Fire resistance</topic><topic>Fourier transforms</topic><topic>FTIR spectrometers</topic><topic>Gas chromatography</topic><topic>Heat</topic><topic>Heat flux</topic><topic>Heat transfer</topic><topic>High-performance polymer</topic><topic>Infrared spectrometers</topic><topic>Material chemistry</topic><topic>Organic compounds</topic><topic>Phenols</topic><topic>Phthalimide</topic><topic>Polyimide</topic><topic>Polyimide resins</topic><topic>Polymers</topic><topic>Pyrolysis</topic><topic>Spectrometry</topic><topic>Thermal degradation</topic><topic>Thermal stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ramgobin, Aditya</creatorcontrib><creatorcontrib>Fontaine, Gaëlle</creatorcontrib><creatorcontrib>Bourbigot, Serge</creatorcontrib><collection>CrossRef</collection><collection>Health and Safety Science Abstracts (Full archive)</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Fire Safety Journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ramgobin, Aditya</au><au>Fontaine, Gaëlle</au><au>Bourbigot, Serge</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Investigation of the thermal stability and fire behavior of high performance polymer: A case study of polyimide</atitle><jtitle>Fire Safety Journal</jtitle><date>2021-03-01</date><risdate>2021</risdate><volume>120</volume><spage>103060</spage><pages>103060-</pages><artnum>103060</artnum><issn>0379-7112</issn><eissn>1873-7226</eissn><abstract>This article reports the thermal and fire behaviors of a high performance polymer, namely polyimide (PI). These behaviors were investigated using different techniques and tests, i.e., pyrolysis-Gas-Chromatography/Mass-Spectrometry (py-GC/MS) and TGA coupled with a Fourier Transform InfraRed spectrometer (TGA-FTIR), and mass loss cone (MLC) at different heat fluxes. It was observed that the thermal stability of PI strongly depends on the oxygen concentration. The main identified gases released during thermal degradation are: carbon dioxide, carbon monoxide, water and organic compounds (phenol, aniline, cyanobenzene, dicyanobenzene, 4-aminophenol, benzene, 2-(4-hydroxyphenyl)isoindoline-1,3-dione, phthalimide, dibenzofuran, and diphenylether). The ignition of PI in MLC experiment is observed under an external heat flux of 60 kW/m2. In that case, the peak of heat released by polyimide is only 30 kW/m2. Based on these investigations, a possible decomposition pathway of PI is proposed.
•Polyimide thermal stability is oxygen dependent.•Polyimide ignites at a heat flux superior or equal to 60 kW/m2.•At 60 kW/m2 the peak of heat released by polyimide is only 30 kW/m2.•Polyimide degradation reactions is proposed.</abstract><cop>Lausanne</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.firesaf.2020.103060</doi><orcidid>https://orcid.org/0000-0002-7113-1687</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0379-7112 |
ispartof | Fire Safety Journal, 2021-03, Vol.120, p.103060, Article 103060 |
issn | 0379-7112 1873-7226 |
language | eng |
recordid | cdi_proquest_journals_2524410617 |
source | Elsevier ScienceDirect Journals |
subjects | Aminophenol Aniline Benzene Carbon dioxide Carbon monoxide Chemical Sciences Decomposition pathway Dibenzofuran Diketones Fire reaction Fire resistance Fourier transforms FTIR spectrometers Gas chromatography Heat Heat flux Heat transfer High-performance polymer Infrared spectrometers Material chemistry Organic compounds Phenols Phthalimide Polyimide Polyimide resins Polymers Pyrolysis Spectrometry Thermal degradation Thermal stability |
title | Investigation of the thermal stability and fire behavior of high performance polymer: A case study of polyimide |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T00%3A52%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Investigation%20of%20the%20thermal%20stability%20and%20fire%20behavior%20of%20high%20performance%20polymer:%20A%20case%20study%20of%20polyimide&rft.jtitle=Fire%20Safety%20Journal&rft.au=Ramgobin,%20Aditya&rft.date=2021-03-01&rft.volume=120&rft.spage=103060&rft.pages=103060-&rft.artnum=103060&rft.issn=0379-7112&rft.eissn=1873-7226&rft_id=info:doi/10.1016/j.firesaf.2020.103060&rft_dat=%3Cproquest_hal_p%3E2524410617%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2524410617&rft_id=info:pmid/&rft_els_id=S0379711220301065&rfr_iscdi=true |