Investigation of the thermal stability and fire behavior of high performance polymer: A case study of polyimide

This article reports the thermal and fire behaviors of a high performance polymer, namely polyimide (PI). These behaviors were investigated using different techniques and tests, i.e., pyrolysis-Gas-Chromatography/Mass-Spectrometry (py-GC/MS) and TGA coupled with a Fourier Transform InfraRed spectrom...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fire Safety Journal 2021-03, Vol.120, p.103060, Article 103060
Hauptverfasser: Ramgobin, Aditya, Fontaine, Gaëlle, Bourbigot, Serge
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 103060
container_title Fire Safety Journal
container_volume 120
creator Ramgobin, Aditya
Fontaine, Gaëlle
Bourbigot, Serge
description This article reports the thermal and fire behaviors of a high performance polymer, namely polyimide (PI). These behaviors were investigated using different techniques and tests, i.e., pyrolysis-Gas-Chromatography/Mass-Spectrometry (py-GC/MS) and TGA coupled with a Fourier Transform InfraRed spectrometer (TGA-FTIR), and mass loss cone (MLC) at different heat fluxes. It was observed that the thermal stability of PI strongly depends on the oxygen concentration. The main identified gases released during thermal degradation are: carbon dioxide, carbon monoxide, water and organic compounds (phenol, aniline, cyanobenzene, dicyanobenzene, 4-aminophenol, benzene, 2-(4-hydroxyphenyl)isoindoline-1,3-dione, phthalimide, dibenzofuran, and diphenylether). The ignition of PI in MLC experiment is observed under an external heat flux of 60 kW/m2. In that case, the peak of heat released by polyimide is only 30 kW/m2. Based on these investigations, a possible decomposition pathway of PI is proposed. •Polyimide thermal stability is oxygen dependent.•Polyimide ignites at a heat flux superior or equal to 60 kW/m2.•At 60 kW/m2 the peak of heat released by polyimide is only 30 kW/m2.•Polyimide degradation reactions is proposed.
doi_str_mv 10.1016/j.firesaf.2020.103060
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_proquest_journals_2524410617</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0379711220301065</els_id><sourcerecordid>2524410617</sourcerecordid><originalsourceid>FETCH-LOGICAL-c418t-a972679c7e9857531bcb0828333d06d279d47ae8c85c806227c03964d30110273</originalsourceid><addsrcrecordid>eNqFkU9LAzEQxYMoWKsfQQh48rB1kuwmu16kiP-g4EXPIU2ybsp2U5Ntod_ehBWvHkJg5vdeMvMQuiawIED43WbRumCjahcUaK4x4HCCZqQWrBCU8lM0AyaaQhBCz9FFjBsAIgCaGfJvw8HG0X2p0fkB-xaPnc0nbFWP46jWrnfjEavB4PwKXttOHZwPGe3cV4d3NrQ-0YO2eOf749aGe7zEWkWb9HtzzGRuuK0z9hKdtaqP9ur3nqPP56ePx9di9f7y9rhcFbok9VioRlAuGi1sU1eiYmSt11DTmjFmgBsqGlMKZWtdV7oGTqnQwBpeGgaEABVsjm4n3071chfcVoWj9MrJ1-VK5hrQhvKSlAeS2JuJ3QX_vU_bkBu_D0P6nqQVLUsCnGTHaqJ08DEG2_7ZEpA5B7mRvznInIOccki6h0ln07gHZ4OM2tm0LZNgPUrj3T8OPzX3kdU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2524410617</pqid></control><display><type>article</type><title>Investigation of the thermal stability and fire behavior of high performance polymer: A case study of polyimide</title><source>Elsevier ScienceDirect Journals</source><creator>Ramgobin, Aditya ; Fontaine, Gaëlle ; Bourbigot, Serge</creator><creatorcontrib>Ramgobin, Aditya ; Fontaine, Gaëlle ; Bourbigot, Serge</creatorcontrib><description>This article reports the thermal and fire behaviors of a high performance polymer, namely polyimide (PI). These behaviors were investigated using different techniques and tests, i.e., pyrolysis-Gas-Chromatography/Mass-Spectrometry (py-GC/MS) and TGA coupled with a Fourier Transform InfraRed spectrometer (TGA-FTIR), and mass loss cone (MLC) at different heat fluxes. It was observed that the thermal stability of PI strongly depends on the oxygen concentration. The main identified gases released during thermal degradation are: carbon dioxide, carbon monoxide, water and organic compounds (phenol, aniline, cyanobenzene, dicyanobenzene, 4-aminophenol, benzene, 2-(4-hydroxyphenyl)isoindoline-1,3-dione, phthalimide, dibenzofuran, and diphenylether). The ignition of PI in MLC experiment is observed under an external heat flux of 60 kW/m2. In that case, the peak of heat released by polyimide is only 30 kW/m2. Based on these investigations, a possible decomposition pathway of PI is proposed. •Polyimide thermal stability is oxygen dependent.•Polyimide ignites at a heat flux superior or equal to 60 kW/m2.•At 60 kW/m2 the peak of heat released by polyimide is only 30 kW/m2.•Polyimide degradation reactions is proposed.</description><identifier>ISSN: 0379-7112</identifier><identifier>EISSN: 1873-7226</identifier><identifier>DOI: 10.1016/j.firesaf.2020.103060</identifier><language>eng</language><publisher>Lausanne: Elsevier Ltd</publisher><subject>Aminophenol ; Aniline ; Benzene ; Carbon dioxide ; Carbon monoxide ; Chemical Sciences ; Decomposition pathway ; Dibenzofuran ; Diketones ; Fire reaction ; Fire resistance ; Fourier transforms ; FTIR spectrometers ; Gas chromatography ; Heat ; Heat flux ; Heat transfer ; High-performance polymer ; Infrared spectrometers ; Material chemistry ; Organic compounds ; Phenols ; Phthalimide ; Polyimide ; Polyimide resins ; Polymers ; Pyrolysis ; Spectrometry ; Thermal degradation ; Thermal stability</subject><ispartof>Fire Safety Journal, 2021-03, Vol.120, p.103060, Article 103060</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright Elsevier BV Mar 2021</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c418t-a972679c7e9857531bcb0828333d06d279d47ae8c85c806227c03964d30110273</citedby><cites>FETCH-LOGICAL-c418t-a972679c7e9857531bcb0828333d06d279d47ae8c85c806227c03964d30110273</cites><orcidid>0000-0002-7113-1687</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0379711220301065$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,309,310,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://hal.univ-lille.fr/hal-02926414$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Ramgobin, Aditya</creatorcontrib><creatorcontrib>Fontaine, Gaëlle</creatorcontrib><creatorcontrib>Bourbigot, Serge</creatorcontrib><title>Investigation of the thermal stability and fire behavior of high performance polymer: A case study of polyimide</title><title>Fire Safety Journal</title><description>This article reports the thermal and fire behaviors of a high performance polymer, namely polyimide (PI). These behaviors were investigated using different techniques and tests, i.e., pyrolysis-Gas-Chromatography/Mass-Spectrometry (py-GC/MS) and TGA coupled with a Fourier Transform InfraRed spectrometer (TGA-FTIR), and mass loss cone (MLC) at different heat fluxes. It was observed that the thermal stability of PI strongly depends on the oxygen concentration. The main identified gases released during thermal degradation are: carbon dioxide, carbon monoxide, water and organic compounds (phenol, aniline, cyanobenzene, dicyanobenzene, 4-aminophenol, benzene, 2-(4-hydroxyphenyl)isoindoline-1,3-dione, phthalimide, dibenzofuran, and diphenylether). The ignition of PI in MLC experiment is observed under an external heat flux of 60 kW/m2. In that case, the peak of heat released by polyimide is only 30 kW/m2. Based on these investigations, a possible decomposition pathway of PI is proposed. •Polyimide thermal stability is oxygen dependent.•Polyimide ignites at a heat flux superior or equal to 60 kW/m2.•At 60 kW/m2 the peak of heat released by polyimide is only 30 kW/m2.•Polyimide degradation reactions is proposed.</description><subject>Aminophenol</subject><subject>Aniline</subject><subject>Benzene</subject><subject>Carbon dioxide</subject><subject>Carbon monoxide</subject><subject>Chemical Sciences</subject><subject>Decomposition pathway</subject><subject>Dibenzofuran</subject><subject>Diketones</subject><subject>Fire reaction</subject><subject>Fire resistance</subject><subject>Fourier transforms</subject><subject>FTIR spectrometers</subject><subject>Gas chromatography</subject><subject>Heat</subject><subject>Heat flux</subject><subject>Heat transfer</subject><subject>High-performance polymer</subject><subject>Infrared spectrometers</subject><subject>Material chemistry</subject><subject>Organic compounds</subject><subject>Phenols</subject><subject>Phthalimide</subject><subject>Polyimide</subject><subject>Polyimide resins</subject><subject>Polymers</subject><subject>Pyrolysis</subject><subject>Spectrometry</subject><subject>Thermal degradation</subject><subject>Thermal stability</subject><issn>0379-7112</issn><issn>1873-7226</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkU9LAzEQxYMoWKsfQQh48rB1kuwmu16kiP-g4EXPIU2ybsp2U5Ntod_ehBWvHkJg5vdeMvMQuiawIED43WbRumCjahcUaK4x4HCCZqQWrBCU8lM0AyaaQhBCz9FFjBsAIgCaGfJvw8HG0X2p0fkB-xaPnc0nbFWP46jWrnfjEavB4PwKXttOHZwPGe3cV4d3NrQ-0YO2eOf749aGe7zEWkWb9HtzzGRuuK0z9hKdtaqP9ur3nqPP56ePx9di9f7y9rhcFbok9VioRlAuGi1sU1eiYmSt11DTmjFmgBsqGlMKZWtdV7oGTqnQwBpeGgaEABVsjm4n3071chfcVoWj9MrJ1-VK5hrQhvKSlAeS2JuJ3QX_vU_bkBu_D0P6nqQVLUsCnGTHaqJ08DEG2_7ZEpA5B7mRvznInIOccki6h0ln07gHZ4OM2tm0LZNgPUrj3T8OPzX3kdU</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Ramgobin, Aditya</creator><creator>Fontaine, Gaëlle</creator><creator>Bourbigot, Serge</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7T2</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>KR7</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-7113-1687</orcidid></search><sort><creationdate>20210301</creationdate><title>Investigation of the thermal stability and fire behavior of high performance polymer: A case study of polyimide</title><author>Ramgobin, Aditya ; Fontaine, Gaëlle ; Bourbigot, Serge</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c418t-a972679c7e9857531bcb0828333d06d279d47ae8c85c806227c03964d30110273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aminophenol</topic><topic>Aniline</topic><topic>Benzene</topic><topic>Carbon dioxide</topic><topic>Carbon monoxide</topic><topic>Chemical Sciences</topic><topic>Decomposition pathway</topic><topic>Dibenzofuran</topic><topic>Diketones</topic><topic>Fire reaction</topic><topic>Fire resistance</topic><topic>Fourier transforms</topic><topic>FTIR spectrometers</topic><topic>Gas chromatography</topic><topic>Heat</topic><topic>Heat flux</topic><topic>Heat transfer</topic><topic>High-performance polymer</topic><topic>Infrared spectrometers</topic><topic>Material chemistry</topic><topic>Organic compounds</topic><topic>Phenols</topic><topic>Phthalimide</topic><topic>Polyimide</topic><topic>Polyimide resins</topic><topic>Polymers</topic><topic>Pyrolysis</topic><topic>Spectrometry</topic><topic>Thermal degradation</topic><topic>Thermal stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ramgobin, Aditya</creatorcontrib><creatorcontrib>Fontaine, Gaëlle</creatorcontrib><creatorcontrib>Bourbigot, Serge</creatorcontrib><collection>CrossRef</collection><collection>Health and Safety Science Abstracts (Full archive)</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Fire Safety Journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ramgobin, Aditya</au><au>Fontaine, Gaëlle</au><au>Bourbigot, Serge</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Investigation of the thermal stability and fire behavior of high performance polymer: A case study of polyimide</atitle><jtitle>Fire Safety Journal</jtitle><date>2021-03-01</date><risdate>2021</risdate><volume>120</volume><spage>103060</spage><pages>103060-</pages><artnum>103060</artnum><issn>0379-7112</issn><eissn>1873-7226</eissn><abstract>This article reports the thermal and fire behaviors of a high performance polymer, namely polyimide (PI). These behaviors were investigated using different techniques and tests, i.e., pyrolysis-Gas-Chromatography/Mass-Spectrometry (py-GC/MS) and TGA coupled with a Fourier Transform InfraRed spectrometer (TGA-FTIR), and mass loss cone (MLC) at different heat fluxes. It was observed that the thermal stability of PI strongly depends on the oxygen concentration. The main identified gases released during thermal degradation are: carbon dioxide, carbon monoxide, water and organic compounds (phenol, aniline, cyanobenzene, dicyanobenzene, 4-aminophenol, benzene, 2-(4-hydroxyphenyl)isoindoline-1,3-dione, phthalimide, dibenzofuran, and diphenylether). The ignition of PI in MLC experiment is observed under an external heat flux of 60 kW/m2. In that case, the peak of heat released by polyimide is only 30 kW/m2. Based on these investigations, a possible decomposition pathway of PI is proposed. •Polyimide thermal stability is oxygen dependent.•Polyimide ignites at a heat flux superior or equal to 60 kW/m2.•At 60 kW/m2 the peak of heat released by polyimide is only 30 kW/m2.•Polyimide degradation reactions is proposed.</abstract><cop>Lausanne</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.firesaf.2020.103060</doi><orcidid>https://orcid.org/0000-0002-7113-1687</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0379-7112
ispartof Fire Safety Journal, 2021-03, Vol.120, p.103060, Article 103060
issn 0379-7112
1873-7226
language eng
recordid cdi_proquest_journals_2524410617
source Elsevier ScienceDirect Journals
subjects Aminophenol
Aniline
Benzene
Carbon dioxide
Carbon monoxide
Chemical Sciences
Decomposition pathway
Dibenzofuran
Diketones
Fire reaction
Fire resistance
Fourier transforms
FTIR spectrometers
Gas chromatography
Heat
Heat flux
Heat transfer
High-performance polymer
Infrared spectrometers
Material chemistry
Organic compounds
Phenols
Phthalimide
Polyimide
Polyimide resins
Polymers
Pyrolysis
Spectrometry
Thermal degradation
Thermal stability
title Investigation of the thermal stability and fire behavior of high performance polymer: A case study of polyimide
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T00%3A52%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Investigation%20of%20the%20thermal%20stability%20and%20fire%20behavior%20of%20high%20performance%20polymer:%20A%20case%20study%20of%20polyimide&rft.jtitle=Fire%20Safety%20Journal&rft.au=Ramgobin,%20Aditya&rft.date=2021-03-01&rft.volume=120&rft.spage=103060&rft.pages=103060-&rft.artnum=103060&rft.issn=0379-7112&rft.eissn=1873-7226&rft_id=info:doi/10.1016/j.firesaf.2020.103060&rft_dat=%3Cproquest_hal_p%3E2524410617%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2524410617&rft_id=info:pmid/&rft_els_id=S0379711220301065&rfr_iscdi=true