Sub‐2 nm Thiophosphate Nanosheets with Heteroatom Doping for Enhanced Oxygen Electrocatalysis

Developing an efficient bifunctional electrocatalyst with accelerated kinetics is important but challenging for rechargeable metal‐air batteries. In this study, a series of anion‐regulated sub‐2 nm ultrathin thiophosphate nanosheets (NiPS3–xSex NSs) is rationally designed and synthesized as bifuncti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2021-05, Vol.31 (19), p.n/a
Hauptverfasser: Song, Junnan, Qiu, Siyao, Hu, Feng, Ding, Yonghao, Han, Silin, Li, Linlin, Chen, Han‐Yi, Han, Xiaopeng, Sun, Chenghua, Peng, Shengjie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 19
container_start_page
container_title Advanced functional materials
container_volume 31
creator Song, Junnan
Qiu, Siyao
Hu, Feng
Ding, Yonghao
Han, Silin
Li, Linlin
Chen, Han‐Yi
Han, Xiaopeng
Sun, Chenghua
Peng, Shengjie
description Developing an efficient bifunctional electrocatalyst with accelerated kinetics is important but challenging for rechargeable metal‐air batteries. In this study, a series of anion‐regulated sub‐2 nm ultrathin thiophosphate nanosheets (NiPS3–xSex NSs) is rationally designed and synthesized as bifunctional oxygen evolution/reduction reaction (OER/ORR) electrocatalysts for Zn‐air batteries. The increase of nominal Se dopants (0 ≤ x ≤ 0.5) leads to the expansion of (001) crystal plane spacing and partially disordered structure generation after the incorporation of Se to pristine NiPS3. More importantly, electronic structures of active sites can be reasonably regulated via coordination of the interaction between anions and cations. Density functional theory calculations reveal that such tailored electronic structures reduce the overpotential of the thermodynamic barriers step for both OER and ORR as well as shorten energy bandgap, which can accelerate reaction kinetics in electrocatalytic processes and enhance electrical conductivity. Consequently, the obtained NiPS3–xSex NSs exhibit low OER overpotential (250 mV) and positive ORR onset potential (0.94 V), large power density (152 mW cm−2), and robust stability (96 h cycle) for Zn‐air devices, far exceeding that of precious metal catalysts. This study provides a novel tactic to design earth‐abundant and highly efficient bifunctional electrocatalysts for metal‐air battery technologies. An anion regulation strategy is employed to design sub‐2 nm ultrathin selenium‐doping NiPS3 nanosheets (NiPS3–xSex NSs) catalyst, which presents outstanding oxygen evolution/reduction reaction activity and durability for half‐reaction and Zn‐air batteries, owing to the enhanced electrical conductivity, increased catalytically active sites, optimized surface electronic configurations, and favorable interaction with oxygen intermediates.
doi_str_mv 10.1002/adfm.202100618
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2524209420</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2524209420</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3548-637f867d650ca290aec532ded62c5cd223b8019501b240fab3aebf6cd29e90313</originalsourceid><addsrcrecordid>eNqFkMtOwzAQRS0EEqWwZW2JdYofeS6rPihSoQuKxM5ynEmTKomD7apkxyfwjXwJqYrKksVoZjTn3pEuQreUjCgh7F5meT1ihPVLSOMzNKAhDT1OWHx-munbJbqydksIjSLuD5B42aXfn18MNzVeF6VuC23bQjrAz7LRtgBwFu9LV-AFODBaOl3jqW7LZoNzbfCsKWSjIMOrj24DDZ5VoJzRSjpZdba01-gil5WFm98-RK_z2Xqy8Jarh8fJeOkpHvixF_Ioj8MoCwOiJEuIBBVwlkEWMhWojDGexoQmAaEp80kuUy4hzcP-kkBCOOVDdHf0bY1-34F1Yqt3pulfChYwn5Gkr54aHSlltLUGctGaspamE5SIQ4jiEKI4hdgLkqNgX1bQ_UOL8XT-9Kf9AeKyd20</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2524209420</pqid></control><display><type>article</type><title>Sub‐2 nm Thiophosphate Nanosheets with Heteroatom Doping for Enhanced Oxygen Electrocatalysis</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Song, Junnan ; Qiu, Siyao ; Hu, Feng ; Ding, Yonghao ; Han, Silin ; Li, Linlin ; Chen, Han‐Yi ; Han, Xiaopeng ; Sun, Chenghua ; Peng, Shengjie</creator><creatorcontrib>Song, Junnan ; Qiu, Siyao ; Hu, Feng ; Ding, Yonghao ; Han, Silin ; Li, Linlin ; Chen, Han‐Yi ; Han, Xiaopeng ; Sun, Chenghua ; Peng, Shengjie</creatorcontrib><description>Developing an efficient bifunctional electrocatalyst with accelerated kinetics is important but challenging for rechargeable metal‐air batteries. In this study, a series of anion‐regulated sub‐2 nm ultrathin thiophosphate nanosheets (NiPS3–xSex NSs) is rationally designed and synthesized as bifunctional oxygen evolution/reduction reaction (OER/ORR) electrocatalysts for Zn‐air batteries. The increase of nominal Se dopants (0 ≤ x ≤ 0.5) leads to the expansion of (001) crystal plane spacing and partially disordered structure generation after the incorporation of Se to pristine NiPS3. More importantly, electronic structures of active sites can be reasonably regulated via coordination of the interaction between anions and cations. Density functional theory calculations reveal that such tailored electronic structures reduce the overpotential of the thermodynamic barriers step for both OER and ORR as well as shorten energy bandgap, which can accelerate reaction kinetics in electrocatalytic processes and enhance electrical conductivity. Consequently, the obtained NiPS3–xSex NSs exhibit low OER overpotential (250 mV) and positive ORR onset potential (0.94 V), large power density (152 mW cm−2), and robust stability (96 h cycle) for Zn‐air devices, far exceeding that of precious metal catalysts. This study provides a novel tactic to design earth‐abundant and highly efficient bifunctional electrocatalysts for metal‐air battery technologies. An anion regulation strategy is employed to design sub‐2 nm ultrathin selenium‐doping NiPS3 nanosheets (NiPS3–xSex NSs) catalyst, which presents outstanding oxygen evolution/reduction reaction activity and durability for half‐reaction and Zn‐air batteries, owing to the enhanced electrical conductivity, increased catalytically active sites, optimized surface electronic configurations, and favorable interaction with oxygen intermediates.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202100618</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Anions ; anion‐regulations ; Chemical evolution ; Chemical reduction ; Crystal structure ; Density functional theory ; Electrical resistivity ; Electrocatalysts ; Materials science ; Metal air batteries ; Nanosheets ; oxygen evolution reactions ; oxygen reduction reactions ; Reaction kinetics ; Rechargeable batteries ; thiophosphate nanosheets ; Zinc ; Zn‐air batteries</subject><ispartof>Advanced functional materials, 2021-05, Vol.31 (19), p.n/a</ispartof><rights>2021 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3548-637f867d650ca290aec532ded62c5cd223b8019501b240fab3aebf6cd29e90313</citedby><cites>FETCH-LOGICAL-c3548-637f867d650ca290aec532ded62c5cd223b8019501b240fab3aebf6cd29e90313</cites><orcidid>0000-0002-7557-7133</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202100618$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202100618$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Song, Junnan</creatorcontrib><creatorcontrib>Qiu, Siyao</creatorcontrib><creatorcontrib>Hu, Feng</creatorcontrib><creatorcontrib>Ding, Yonghao</creatorcontrib><creatorcontrib>Han, Silin</creatorcontrib><creatorcontrib>Li, Linlin</creatorcontrib><creatorcontrib>Chen, Han‐Yi</creatorcontrib><creatorcontrib>Han, Xiaopeng</creatorcontrib><creatorcontrib>Sun, Chenghua</creatorcontrib><creatorcontrib>Peng, Shengjie</creatorcontrib><title>Sub‐2 nm Thiophosphate Nanosheets with Heteroatom Doping for Enhanced Oxygen Electrocatalysis</title><title>Advanced functional materials</title><description>Developing an efficient bifunctional electrocatalyst with accelerated kinetics is important but challenging for rechargeable metal‐air batteries. In this study, a series of anion‐regulated sub‐2 nm ultrathin thiophosphate nanosheets (NiPS3–xSex NSs) is rationally designed and synthesized as bifunctional oxygen evolution/reduction reaction (OER/ORR) electrocatalysts for Zn‐air batteries. The increase of nominal Se dopants (0 ≤ x ≤ 0.5) leads to the expansion of (001) crystal plane spacing and partially disordered structure generation after the incorporation of Se to pristine NiPS3. More importantly, electronic structures of active sites can be reasonably regulated via coordination of the interaction between anions and cations. Density functional theory calculations reveal that such tailored electronic structures reduce the overpotential of the thermodynamic barriers step for both OER and ORR as well as shorten energy bandgap, which can accelerate reaction kinetics in electrocatalytic processes and enhance electrical conductivity. Consequently, the obtained NiPS3–xSex NSs exhibit low OER overpotential (250 mV) and positive ORR onset potential (0.94 V), large power density (152 mW cm−2), and robust stability (96 h cycle) for Zn‐air devices, far exceeding that of precious metal catalysts. This study provides a novel tactic to design earth‐abundant and highly efficient bifunctional electrocatalysts for metal‐air battery technologies. An anion regulation strategy is employed to design sub‐2 nm ultrathin selenium‐doping NiPS3 nanosheets (NiPS3–xSex NSs) catalyst, which presents outstanding oxygen evolution/reduction reaction activity and durability for half‐reaction and Zn‐air batteries, owing to the enhanced electrical conductivity, increased catalytically active sites, optimized surface electronic configurations, and favorable interaction with oxygen intermediates.</description><subject>Anions</subject><subject>anion‐regulations</subject><subject>Chemical evolution</subject><subject>Chemical reduction</subject><subject>Crystal structure</subject><subject>Density functional theory</subject><subject>Electrical resistivity</subject><subject>Electrocatalysts</subject><subject>Materials science</subject><subject>Metal air batteries</subject><subject>Nanosheets</subject><subject>oxygen evolution reactions</subject><subject>oxygen reduction reactions</subject><subject>Reaction kinetics</subject><subject>Rechargeable batteries</subject><subject>thiophosphate nanosheets</subject><subject>Zinc</subject><subject>Zn‐air batteries</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkMtOwzAQRS0EEqWwZW2JdYofeS6rPihSoQuKxM5ynEmTKomD7apkxyfwjXwJqYrKksVoZjTn3pEuQreUjCgh7F5meT1ihPVLSOMzNKAhDT1OWHx-munbJbqydksIjSLuD5B42aXfn18MNzVeF6VuC23bQjrAz7LRtgBwFu9LV-AFODBaOl3jqW7LZoNzbfCsKWSjIMOrj24DDZ5VoJzRSjpZdba01-gil5WFm98-RK_z2Xqy8Jarh8fJeOkpHvixF_Ioj8MoCwOiJEuIBBVwlkEWMhWojDGexoQmAaEp80kuUy4hzcP-kkBCOOVDdHf0bY1-34F1Yqt3pulfChYwn5Gkr54aHSlltLUGctGaspamE5SIQ4jiEKI4hdgLkqNgX1bQ_UOL8XT-9Kf9AeKyd20</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Song, Junnan</creator><creator>Qiu, Siyao</creator><creator>Hu, Feng</creator><creator>Ding, Yonghao</creator><creator>Han, Silin</creator><creator>Li, Linlin</creator><creator>Chen, Han‐Yi</creator><creator>Han, Xiaopeng</creator><creator>Sun, Chenghua</creator><creator>Peng, Shengjie</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-7557-7133</orcidid></search><sort><creationdate>20210501</creationdate><title>Sub‐2 nm Thiophosphate Nanosheets with Heteroatom Doping for Enhanced Oxygen Electrocatalysis</title><author>Song, Junnan ; Qiu, Siyao ; Hu, Feng ; Ding, Yonghao ; Han, Silin ; Li, Linlin ; Chen, Han‐Yi ; Han, Xiaopeng ; Sun, Chenghua ; Peng, Shengjie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3548-637f867d650ca290aec532ded62c5cd223b8019501b240fab3aebf6cd29e90313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Anions</topic><topic>anion‐regulations</topic><topic>Chemical evolution</topic><topic>Chemical reduction</topic><topic>Crystal structure</topic><topic>Density functional theory</topic><topic>Electrical resistivity</topic><topic>Electrocatalysts</topic><topic>Materials science</topic><topic>Metal air batteries</topic><topic>Nanosheets</topic><topic>oxygen evolution reactions</topic><topic>oxygen reduction reactions</topic><topic>Reaction kinetics</topic><topic>Rechargeable batteries</topic><topic>thiophosphate nanosheets</topic><topic>Zinc</topic><topic>Zn‐air batteries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Song, Junnan</creatorcontrib><creatorcontrib>Qiu, Siyao</creatorcontrib><creatorcontrib>Hu, Feng</creatorcontrib><creatorcontrib>Ding, Yonghao</creatorcontrib><creatorcontrib>Han, Silin</creatorcontrib><creatorcontrib>Li, Linlin</creatorcontrib><creatorcontrib>Chen, Han‐Yi</creatorcontrib><creatorcontrib>Han, Xiaopeng</creatorcontrib><creatorcontrib>Sun, Chenghua</creatorcontrib><creatorcontrib>Peng, Shengjie</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Song, Junnan</au><au>Qiu, Siyao</au><au>Hu, Feng</au><au>Ding, Yonghao</au><au>Han, Silin</au><au>Li, Linlin</au><au>Chen, Han‐Yi</au><au>Han, Xiaopeng</au><au>Sun, Chenghua</au><au>Peng, Shengjie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sub‐2 nm Thiophosphate Nanosheets with Heteroatom Doping for Enhanced Oxygen Electrocatalysis</atitle><jtitle>Advanced functional materials</jtitle><date>2021-05-01</date><risdate>2021</risdate><volume>31</volume><issue>19</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Developing an efficient bifunctional electrocatalyst with accelerated kinetics is important but challenging for rechargeable metal‐air batteries. In this study, a series of anion‐regulated sub‐2 nm ultrathin thiophosphate nanosheets (NiPS3–xSex NSs) is rationally designed and synthesized as bifunctional oxygen evolution/reduction reaction (OER/ORR) electrocatalysts for Zn‐air batteries. The increase of nominal Se dopants (0 ≤ x ≤ 0.5) leads to the expansion of (001) crystal plane spacing and partially disordered structure generation after the incorporation of Se to pristine NiPS3. More importantly, electronic structures of active sites can be reasonably regulated via coordination of the interaction between anions and cations. Density functional theory calculations reveal that such tailored electronic structures reduce the overpotential of the thermodynamic barriers step for both OER and ORR as well as shorten energy bandgap, which can accelerate reaction kinetics in electrocatalytic processes and enhance electrical conductivity. Consequently, the obtained NiPS3–xSex NSs exhibit low OER overpotential (250 mV) and positive ORR onset potential (0.94 V), large power density (152 mW cm−2), and robust stability (96 h cycle) for Zn‐air devices, far exceeding that of precious metal catalysts. This study provides a novel tactic to design earth‐abundant and highly efficient bifunctional electrocatalysts for metal‐air battery technologies. An anion regulation strategy is employed to design sub‐2 nm ultrathin selenium‐doping NiPS3 nanosheets (NiPS3–xSex NSs) catalyst, which presents outstanding oxygen evolution/reduction reaction activity and durability for half‐reaction and Zn‐air batteries, owing to the enhanced electrical conductivity, increased catalytically active sites, optimized surface electronic configurations, and favorable interaction with oxygen intermediates.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202100618</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-7557-7133</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2021-05, Vol.31 (19), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_2524209420
source Wiley Online Library Journals Frontfile Complete
subjects Anions
anion‐regulations
Chemical evolution
Chemical reduction
Crystal structure
Density functional theory
Electrical resistivity
Electrocatalysts
Materials science
Metal air batteries
Nanosheets
oxygen evolution reactions
oxygen reduction reactions
Reaction kinetics
Rechargeable batteries
thiophosphate nanosheets
Zinc
Zn‐air batteries
title Sub‐2 nm Thiophosphate Nanosheets with Heteroatom Doping for Enhanced Oxygen Electrocatalysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T12%3A39%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sub%E2%80%902%20nm%20Thiophosphate%20Nanosheets%20with%20Heteroatom%20Doping%20for%20Enhanced%20Oxygen%20Electrocatalysis&rft.jtitle=Advanced%20functional%20materials&rft.au=Song,%20Junnan&rft.date=2021-05-01&rft.volume=31&rft.issue=19&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202100618&rft_dat=%3Cproquest_cross%3E2524209420%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2524209420&rft_id=info:pmid/&rfr_iscdi=true